黏着箭菌JB19对菊苣幼苗铅镉抗性及黄酮生物合成的影响
作者:
基金项目:

黑龙江省省属高等学校基本科研业务费科研项目(135509131)


Effect of Ensifer adhaerens JB19 on lead and cadmium resistance and flavonoid synthesis in chicory (Cichorium intybus) seedlings
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】探讨耐重金属细菌对铅(lead, Pb)和镉(cadmium, Cd)胁迫下菊苣(Cichorium intybus L.)幼苗Pb、Cd抗性和黄酮生物合成的调控作用。【方法】在不同浓度Pb和Cd [(200+20) mg/kg、(400+40) mg/kg、(800+80) mg/kg]处理下,接种菌株JB19并测定菊苣幼苗生长指标、Pb和Cd含量、抗氧化酶活性、总黄酮含量和黄酮生物合成相关基因表达量。【结果】菌株JB19可显著提高不同浓度Pb和Cd处理下菊苣的生物量和叶绿素含量;减少氧化损伤,地上部和根部Pb、Cd含量均降低,其中在(Pb200+Cd20) mg/kg处理下H2O2和丙二醛(malondialdehyde, MDA)含量分别比对照降低了25.7%和26.1%,地上部Pb、Cd含量降低的幅度最大,分别降低了53.2%和54.1%;加强了菊苣幼苗的抗氧化酶防御系统,黄酮生物合成相关基因均显著上调,其中在(Pb400+Cd40) mg/kg处理下黄酮类化合物的含量增加了105.2%,查尔酮异构酶基因上调最显著,达458.9%。【结论】菌株JB19在减少植株体内重金属积累的同时,还可以通过增加植物生物量、抑制活性氧和膜脂过氧化水平、增强抗氧化酶活性和改变次级代谢产物黄酮类化合物的水平,提高菊苣幼苗的Pb、Cd抗性。

    Abstract:

    [Objective] To investigate the regulatory effect of the heavy metal-resistant bacteria on lead (Pb) and cadmium (Cd) resistance and flavonoid biosynthesis in chicory (Cichorium intybus L.) seedlings under Pb and Cd stress. [Methods] After inoculation of Ensifer adhaerens JB19, the growth indicators, the content of Pb and Cd, the activities of antioxidant enzymes, the content of total flavonoids, and the expression of genes related to flavonoid biosynthesis in the chicory seedlings exposed to different concentrations of Pb and Cd ((200+20) mg/kg, (400+40) mg/kg, (800+80) mg/kg) were determined. [Results] Strain JB19 significantly increased the biomass and chlorophyll content of chicory seedlings exposed to different concentrations of Pb and Cd. Under the Pb+Cd treatment of (200+20) mg/kg, the inoculation of strain JB19 decreased the content of H2O2, MDA, and Pb and Cd in the shoot by 25.7%, 26.1%, 53.2%, and 54.1%, respectively, compared with the control. Moreover, the strain strengthened the antioxidant enzyme system and up-regulated expression of the genes involved in flavonoid biosynthesis of chicory seedlings. Under the Pb+Cd treatment of (400+40) mg/kg, the strain increased the flavonoid content by 105.2% and up-regulated the expression of chalcone isomerase gene to reach 458.9%. [Conclusion] E. adhaerens JB19 can reduce the accumulation of heavy metals and improve the Pb and Cd resistance of chicory seedlings by increasing plant biomass, reducing active oxygen, inhibiting membrane lipid peroxidation, enhancing the activities of antioxidant enzymes, and regulating the levels of flavonoids.

    参考文献
    [1] PEROVIĆ J, TUMBAS ŠAPONJAC V, KOJIĆ J, KRULJ J, MORENO DA, GARCÍA-VIGUERA C, BODROŽA-SOLAROV M, ILIĆ N. Chicory (Cichorium intybus L.) as a food ingredient-nutritional composition, bioactivity, safety, and health claims:a review[J]. Food Chemistry, 2021, 336:127676.
    [2] REBELLO S, SIVAPRASAD MS, ANOOPKUMAR AN, JAYAKRISHNAN L, ANEESH EM, NARISETTY V, SINDHU R, BINOD P, PUGAZHENDHI A, PANDEY A. Cleaner technologies to combat heavy metal toxicity[J]. Journal of Environmental Management, 2021, 296:113231.
    [3] MENG CY, WANG P, HAO ZL, GAO ZJ, LI Q, GAO HX, LIU YL, LI QZ, WANG Q, FENG FM. Ecological and health risk assessment of heavy metals in soil and Chinese herbal medicines[J]. Environmental Geochemistry and Health, 2022, 44(3):817-828.
    [4] JIN ZM, XIE L, ZHANG T, LIU LJ, BLACK T, JONES KC, ZHANG H, WANG XZ, JIN NF, ZHANG DY. Interrogating cadmium and lead biosorption mechanisms by Simplicillium chinense via infrared spectroscopy[J]. Environmental Pollution, 2020, 263:114419.
    [5] CHEN C, WANG M, ZHU JZ, TANG YW, ZHANG HC, ZHAO QM, JING MY, CHEN YH, XU XH, JIANG JD, SHEN ZG. Long-term effect of epigenetic modification in plant-microbe interactions:modification of DNA methylation induced by plant growth-promoting bacteria mediates promotion process[J]. Microbiome, 2022, 10(1):36.
    [6] TENG ZD, SHAO W, ZHANG KY, HUO YQ, LI M. Characterization of phosphate solubilizing bacteria isolated from heavy metal contaminated soils and their potential for lead immobilization[J]. Journal of Environmental Management, 2019, 231:189-197.
    [7] WANG Q, CHEN L, HE LY, SHENG XF. Increased biomass and reduced heavy metal accumulation of edible tissues of vegetable crops in the presence of plant growth-promoting Neorhizobium huautlense T1-17 and biochar[J]. Agriculture, Ecosystems & Environment, 2016, 228:9-18.
    [8] DAI S, CHEN Q, JIANG M, WANG BQ, XIE ZM, YU N, ZHOU YL, LI S, WANG LY, HUA YJ, TIAN B. Colonized extremophile Deinococcus radiodurans alleviates toxicity of cadmium and lead by suppressing heavy metal accumulation and improving antioxidant system in rice[J]. Environmental Pollution, 2021, 284:117127.
    [9] KHANNA K, JAMWAL VL, SHARMA A, GANDHI SG, OHRI P, BHARDWAJ R, AL-HUQAIL AA, SIDDIQUI MH, ALI HM, AHMAD P. Supplementation with plant growth promoting rhizobacteria (PGPR) alleviates cadmium toxicity in Solanum lycopersicum by modulating the expression of secondary metabolites[J]. Chemosphere, 2019, 230:628-639.
    [10] HANDA N, KOHLI SK, SHARMA A, THUKRAL AK, BHARDWAJ R, ALYEMENI MN, WIJAYA L, AHMAD P. Selenium ameliorates chromium toxicity through modifications in pigment system, antioxidative capacity, osmotic system, and metal chelators in Brassica juncea seedlings[J]. South African Journal of Botany, 2018, 119:1-10.
    [11] HANDA N, KOHLI SK, SHARMA A, THUKRAL AK, BHARDWAJ R, ABD_ALLAH EF, ALQARAWI AA, AHMAD P. Selenium modulates dynamics of antioxidative defence expression, photosynthetic attributes and secondary metabolites to mitigate chromium toxicity in Brassica juncea L. plants[J]. Environmental and Experimental Botany, 2019, 161:180-192.
    [12] ISLAM F, YASMEEN T, ALI Q, ALI S, ARIF MS, HUSSAIN S, RIZVI H. Influence of Pseudomonas aeruginosa as PGPR on oxidative stress tolerance in wheat under Zn stress[J]. Ecotoxicology and Environmental Safety, 2014, 104:285-293.
    [13] 金忠民, 于保刚, 李馨园, 刘丽杰, 刘博, 李春月, 齐欣, 刘本松, 刘宇恒. 粘着箭菌JB19在修复重金属污染土壤中的应用[P]. 黑龙江省:CN114042748A. 2022-02-15. JIN ZM, YU BG, LI XY, LIU LJ, LIU B, LI CY, QI X, LIU BS, LIU YH. Application of Fusarium adhesion strain JB19 in remediation of heavy metal contaminated soil. Heilongjiang Province:CN114042748A. 2022-02-15. (in Chinese).
    [14] ZŁOCH M, KOWALKOWSKI T, TYBURSKI J, HRYNKIEWICZ K. Modeling of phytoextraction efficiency of microbially stimulated Salix dasyclados L. in the soils with different speciation of heavy metals[J]. International Journal of Phytoremediation, 2017, 19(12):1150-1164.
    [15] WANG Q, GE CF, XU SA, WU YJ, SAHITO ZA, MA LY, PAN FS, ZHOU QY, HUANG LK, FENG Y, YANG XE. The endophytic bacterium Sphingomonas SaMR12 alleviates Cd stress in oilseed rape through regulation of the GSH-AsA cycle and antioxidative enzymes[J]. BMC Plant Biology, 2020, 20(1):63.
    [16] KURKINA AV, SAVEL'EVA AE, KURKIN VA. Quantitative determination of total flavonoids in Tagetes patula marigold flowers[J]. Pharmaceutical Chemistry Journal, 2021, 55(2):165-169.
    [17] LIVAK KJ, SCHMITTGEN TD. Analysis of relative gene expression data using real-time quantitative PCR a潮瑤愠汴??渠瘲椼牳潵湰派攦渣琸?′有?名三????监?????土???戾爠?孥??嵯???卝?丠啍婥婴???乳???‰到????丵??利??‰??匴唰???????刱????乔????义传坈刮传婂????割????乭????乴???剡?????啡??呯?????剨敥条當汹愠瑭楥潴湡?漠晳?牲敥慳捳琠楡癮敤?潤硥祣杲敥湡?獥灤攠捡楣散獵?慵湬摡?慩湯瑮椠潯硦椠摭慥湴瑡?摳攠晩敮渠獰敬?楮湴?灴汩慳湳瑵獥?町湭摥散牨?獮慩汳業湳椠瑡祮孤?嵦???湲瑥攠牰湲慯瑳楰潥湣慴汳??潝甮爠湅慣汯?潯晸??潯汬敯捧畹氠慡牮?匠捅楮敶湩捲敯獮???ぴ?????????????㈱???戱爴?嬺㈱?崵??????????倱?剝娠?????呍???呅???剓????????????剉??剙?听??剁?????博???則??卆???剌????乔?删啊???敓愠摋?愬渠摚?慁汎畇洠楈測椠畚浈?楎湇搠畄捙攮搠?潰硰楬摩慣瑡楴癩敯?猠瑯牦攠猼獩 ̄慓湩摭?慬汩瑣敩牬慬瑩極潭渠?楨湩?瑥桮敳?愼振瑩椾瘠楦瑯楲攠獃?漠晡?慤渠瑐楢漠硢楩摯慳湯瑲?整湩穯祮洠敡獮?椠湥?捨桡楮捣潩牮祧?灨汥慡湶瑹猠孭?嵴??匠捰楨敹湴瑯楲慥??潤物瑡楴捩畯汮琠畯牦愠敳???び????㈠???ㄠこ??????戠牯?嬠??嵥?奔啯?????奮?佩?奯坮????丬?′?倱??圠?丹??報刳???????? ̄??唰????????夠???楎??湘瑆攬爠潈払愠捊瑗攬爠??椠??猬瀠???????椠湍潥捴畡汬愭瑩業潭湯?楩湬晩決畩敮湧挠攼摩 ̄桓敥慲癲祡?浩敡琠慬汩?極湥摦畡捣敩摥?潳砼椯摩愾琠楃癌攭?猠瑡牮敤猠猼?椾湂?灣慩歬捬桵潳椠???楲??牧慩獥獮楳捩慳?振慩派瀠敘猳琰爠楩獮??楥?????獩獯灭???椠?据桤椠湲敥湤獵楣獥??楥???愠歭楥湴潡??慡湣摣?睭慵瑬敡牴?獯灮椠湯慦挠桲???楳??灵潮浤潥敲愠??楥??愠煣畯慮瑤楩捴?????捊畝氮琠楅癣慯瑴敯摸?楣湯?捯慧摹洠楡畮浤?慅湮摶?汲敯慮摭?据潴?捬漠湓瑡慦浥楴湹愬琠攲搰?猸漬椠氱猶嬱?崵??倭氵愳渳琮?慢湲搾?匲漱楝氠???ぁ??????????????????ㄠ??払牒?孁??嵓?圠?丬??????夠?久?????夻?传??刬?????婏??…??‰????匠???????????????乴??奮堠?????塨???卣??乲??塡坴??坮?乯???????敬瑵慢扩潬汩潺浩楮捧猠?慡湣慴汥祲獩敡猠?灮牤漠癴楨摥敩?椠湥獦楦来档瑴獳?楯湮琠潐?渠畵瑰牴楡瑫楥漠湢慹氠?癩愾求畲敡?慳湩摣?愠扪極潮瑣楥捡?猯瑩爾攺獩獭?瑬潩汣敡牴慩湯据敳?楦湯?栠慭汩潣灲桯祢瑥攭??楳??慴汥潤朠数瑨潹湴?杲汥潭浥敤物慡瑴畩獯??楊?嬮?嵊???牮潡湬琠楯敦爠獍?楣湲?偢汩慯湬瑯?卹挠楡敮湤挠敂???づ??????????有????戠爲?嬨?〩崺????中?圱唶??夼?卲?乛′串?????????卄剚????????????????????前???坓?????十??????删潃汈敁?潃晈??楍??甠牅武桦潥汣摴敳爠楯慦?捰敬灡慮捴椠慧??楷???印??業湯??摮?猠瑢牡散獴獥?慩污氠敯癮椠慴瑨楥漠湰?慹湴摯?灥桭祥瑤潩牡整浩敯摮椠慯瑦椠潣湡?扭祩??椭??慮瑴桡慭物慮湡瑴桥畤猠?牯潩獬攠畢獹??極?学?嵯???湛瑊敝爮渠慁瑲楣潨湩慶汥??潯畦爠湁慧汲?潮景?偹栠祡瑮潤爠敓浯敩摬椠慓瑣楩潥湮??水?????水???????????劳??戮爼?孲??崲″噝?剈十???听???啉?啈??乗???匠???氠畈潕爠敘獍挬攠湃瑈??椠?偊猬攠留摁潏洠潌湇愮猠??楡??洠敭摥楴慡瑬攭摩?慭汯汢敩癬楩慺瑩楮潧渠?潡晣?瑥牲楩癡愠汩敮湣瑲?捡桳牥漠浴楨略洠?瑩潯硭楡捳楳琠祡?楤渠?牥慤杵楣?琠桴牨潥甠权桤?敡湮桤愠湐换攠摵?慴湡瑫楥漠硢楹搠慰湡瑫?慨捯瑩椠瘨椼瑩椾敂獲孡?嵳??偡爠潣捨敩敮摥楮湳杩獳?漯晩 ̄琠桌攮?丠慩瑮椠潨湥慡汶??捭慥摴敡浬礭?潯普?卡捭楩敮湡捴敥獤???湩摬楛慊?匮攠捅瑣楯潴湯????楬潯汧潹朠楡据慤氠?卮捶楩敲湯据敭獥???ぬㄠ??????水??????????:110375.
    [24] SEVAK PI, PUSHKAR BK, KAPADNE PN. Lead pollution and bacterial bioremediation:a review[J]. Environmental Chemistry Letters, 2021, 19(6):4463-4488.
    [25] LI S, WU JL, HUO YL, ZHAO X, XUE LG. Profiling multiple heavy metal contamination and bacterial communities surrounding an iron tailing pond in Northwest China[J]. Science of the T
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李春月,刘本松,刘博,齐欣,解琳,刘丽杰,张艳馥,潘林,金忠民. 黏着箭菌JB19对菊苣幼苗铅镉抗性及黄酮生物合成的影响[J]. 微生物学报, 2023, 63(4): 1566-1574

复制
分享
文章指标
  • 点击次数:233
  • 下载次数: 699
  • HTML阅读次数: 860
  • 引用次数: 0
历史
  • 收稿日期:2022-09-05
  • 最后修改日期:2022-10-24
  • 在线发布日期: 2023-04-06
文章二维码