造礁石珊瑚共生虫黄藻离体培养方法的优化
作者:
基金项目:

国家自然科学基金(42090041, 42030502);广西壮族自治区自然科学基金(2018GXNSFAA281328, AD17129063,AA17204074)


Optimization of in vitro culture method for zooxanthellae associated with reef-building corals
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [57]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】开发一种高效地从造礁石珊瑚中分离、培养共生虫黄藻的技术方法,为珊瑚共生虫黄藻藻种资源储备和生理功能研究积累基础。【方法】首先采用微孔滤网过滤法和密度梯度离心法从造礁石珊瑚组织中直接分离或富集共生虫黄藻细胞,然后用改良的L1培养基在96孔板上对所得细胞进行离体培养,最后进行单细胞分离、培养和(或)平板划线培养获得单克隆虫黄藻细胞系。对所得虫黄藻单克隆藻株进行聚合酶链式反应-限制性内切酶片段长度多态性(polymerase chain reaction-restriction fragment length polymorphism, PCR-RFLP)分析,结合内转录间隔区2 (internal transcribed spacer 2, ITS2)和大亚基(large subunit, LSU)测序进行物种鉴定及系统发育分析。【结果】采用上述方法从涠洲岛的霜鹿角珊瑚(Acropora pruinose)和西沙群岛的丛生盔形珊瑚(Galaxea fascicularis)及柔枝鹿角珊瑚(Acropora tenuis)中分离、培养得到3个虫黄藻株系,编号分别为AP21C1、GF21D1和AT21A113。3株藻的ITS2基因型分别鉴定为C1、D1及A113亚系群,系统发育特征分别与已命名的虫黄藻Cladocopium goreauiDurusdinium trenchiiSymbiodinium natans基本一致。3株藻细胞在对数生长期均有自旋运动且具有贴壁性,其中AP21C1株系的虫黄藻细胞无法在琼脂平板上生长。【结论】本研究提供了一种高效地对珊瑚共生虫黄藻进行离体培养的方法,将对后续珊瑚共生虫黄藻物种资源的探索、利用、生理功能研究等提供有力的技术理论支持。

    Abstract:

    [Objective] To develop an efficient method for isolating and cultivating zooxanthellae from reef-building corals and lay a foundation for the research on germplasm banking and physiological functions of zooxanthellae species associated with corals. [Methods] The zooxanthellae were isolated and enriched from reef-building coral tissues by micro-strainer filtration and density gradient centrifugation, and the cells were cultured in 96-well plates with the modified L1 medium. Single clones of zooxanthellae were obtained by single cell isolation, culture, and/or plate streaking. The species and phylogenetic relationship were identified by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis in combination with internal transcribed spacer 2 (ITS2) and large subunit (LSU) sequences. [Results] Three zooxanthellae strains were isolated from Acropora pruinose of Weizhou Island, Galaxea fascicularis and Acropora tenuis of Xisha Islands and numbered AP21C1, GF21D1, and AT21A113, respectively. The three strains showed the ITS2 genotypes of C1, D1, and A113 and the sequences basically consistent with Cladocopium goreaui, Durusdinium trenchii, and Symbiodinium natans, respectively. All the three strains demonstrated self-spinning motion and adherence during the logarithmic growth phase, and strain AP21C1 was unable to grow on agar plates. [Conclusion] This study develops an efficient method for the in vitro culture of zooxanthellae associated with corals and provides a technical and theoretical basis for the research on the germplasm banking and physiological functions of zooxanthellae species associated with corals.

    参考文献
    [1] 余克服. 珊瑚礁科学概论[M]. 北京:科学出版社, 2018. YU KF. Introduction to the Science of Coral Reefs[M]. Beijing:Science Press, 2018(in Chinese).
    [2] PEIXOTO RS, ROSADO PM, LEITE DC, ROSADO AS, BOURNE DG. Beneficial microorganisms for corals (BMC):proposed mechanisms for coral health and resilience[J]. Frontiers in Microbiology, 2017, 8:341.
    [3] LIU H, STEPHENS TG, GONZÁLEZ-PECH RA, BELTRAN VH, LAPEYRE B, BONGAERTS P, COOKE I, ARANDA M, BOURNE DG, FORÊT S, MILLER DJ, van OPPEN MJH, VOOLSTRA CR, RAGAN MA, CHAN CX. Symbiodinium genomes reveal adaptive evolution of functions related to coral-dinoflagellate symbiosis[J]. Communications Biology, 2018, 1:95.
    [4] HUGHES TP, BARNES ML, BELLWOOD DR, CINNER JE, CUMMING GS, JACKSON JBC, KLEYPAS J, van de LEEMPUT IA, LOUGH JM, MORRISON TH, PALUMBI SR, van NES EH, SCHEFFER M. Coral reefs in the anthropocene[J]. Nature, 2017, 546(7656):82-90.
    [5] HUGHES TP, KERRY JT, ÁLVAREZ-NORIEGA M, ÁLVAREZ-ROMERO JG, ANDERSON KD, BAIRD AH, BABCOCK RC, BEGER M, BELLWOOD DR, BERKELMANS R, BRIDGE TC, BUTLER IR, BYRNE M, CANTIN NE, COMEAU S, CONNOLLY SR, CUMMING GS, DALTON SJ, DIAZ-PULIDO G, EAKIN CM, et al. Global warming and recurrent mass bleaching of corals[J]. Nature, 2017, 543(7645):373-377.
    [6] HUME BC, VOOLSTRA CR, ARIF C, D'ANGELO C, BURT JA, EYAL G, LOYA Y, WIEDENMANN J. Ancestral genetic diversity associated with the rapid spread of stress-tolerant coral symbionts in response to Holocene climate change[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(16):4416-4421.
    [7] NITSCHKE MR, CRAVEIRO SC, BRANDÃO C, FIDALGO C, SERÔDIO J, CALADO AJ, CALADO AJ, FROMMLET JC. Description of Freudenthalidium gen. nov. and Halluxium gen. nov. to formally recognize clades Fr3 and H as genera in the family Symbiodiniaceae (Dinophyceae)[J]. Journal of Phycology, 2020, 56(4):923-940.
    [8] la JEUNESSE TC, PARKINSON JE, GABRIELSON PW, JEONG HJ, REIMER JD, VOOLSTRA CR, SANTOS SR. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts[J]. Current Biology, 2018, 28(16):2570-2580.e6.
    [9] POCHON X, LaJEUNESSE TC. Miliolidium n. gen, a new symbiodiniacean genus whose members associate with soritid foraminifera or are free-living[J]. The Journal of Eukaryotic Microbiology, 2021:e12856.
    [10] GONG S, CHAI G, SUN W, ZHANG F, YU K, LI Z. Global-scale diversity and distribution characteristics of reef-associated Symbiodiniaceae via the cluster-based parsimony of internal transcribed spacer 2 sequences[J]. Journal of Ocean University of China, 2021, 20(2):296-306.
    [11] BERKELMANS R, van OPPEN MJ. The role of zooxanthellae in the thermal tolerance of corals:a 'nugget of hope' for coral reefs in an era of climate change[J]. Proceedings Biological Sciences, 2006, 273(1599):2305-2312.
    [12] BAKER AC, STARGER CJ, MCCLANAHAN TR, GLYNN PW. Coral reefs:corals' adaptive response to climate change[J]. Nature, 2004, 430(7001):741.
    [13] LAJEUNESSE TC, PETTAY DT, SAMPAYO EM, PHONGSUWAN N, BROWN B, OBURA DO, HOEGH-GULDBERG O, FITT WK. Long-standing environmental conditions, geographic isolation and host-symbiont specificity influence the relative ecological dominance and genetic diversification of coral endosymbionts in the genus Symbiodinium[J]. Journal of Biogeography, 2010, 37(5):785-800.
    [14] 陈飚. 南海珊瑚微生物组的空间变化及其环境适应机制[D]. 南宁:广西大学博士学位论文, 2021. CHEN B. Spatial change of coral microbiome in the South China Sea and its environmental adaptation mechanism[D]. Nanning:Doctoral Dissertation of Guangxi University, 2021(in Chinese).
    [15] VOOLSTRA CR, VALENZUELA JJ, TURKARSLAN S, CÁRDENAS A, HUME BCC, PERNA G, BUITRAGO-LÓPEZ C, ROWE K, ORELLANA MV, BALIGA NS, PARANJAPE S, BANC-PRANDI G, BELLWORTHY J, FINE M, FRIAS-TORRES S, BARSHIS DJ. Contrasting heat stress response patterns of coral holobionts across the Red Sea suggest distinct mechanisms of thermal tolerance[J]. Molecular Ecology, 2021, 30(18):4466-4480.
    [16] ZAHL PA, MCLAUGHLIN JJA. Isolation and cultivation of zooxanthellae[J]. Nature, 1957, 180(4578):199-200.
    [17] MCLAUGHLIN JJA, ZAHL PA. Studies in marine biology. II. In vitro culture of zooxanthellae[J]. Proceedings of the Society for Experimental Biology and Medicine, 1957, 95(1):115-120.
    [18] MCLAUGHLIN JJA, ZAHL PA. Axenic zooxanthellae from various invertebrate hosts[J]. Annals of the New York Academy of Sciences, 1959, 77(2):55-72.
    [19] FRANKER CK. Some properties of DNA from zooxanthellae harbored by anemone Anthopleura elegantissima[J]. Journal of Phycology, 1970, 6(3):299-305.
    [20] TYTLER EM, DAVIES PS. A method of isolating clean and viable zooxanthellae by density gradient centrifugation[J]. Limnology and Oceanography, 1983, 28(6):1266-1268.
    [21] LESSER MP, SHICK JM. Effects of irradiance and ultraviolet radiation on photoadaptation in the zooxanthellae of Aiptasia pallida:primary production, photoinhibition, and enzymic defenses against oxygen toxicity[J]. Marine Biology, 1989, 102:243-255.
    [22] SOFFER N, GIBBS P, BAKER AC. Practical applications of contaminant-free Symbiodinium cultures grown on solid media[C]. Proceedings of the 11th International Coral Reef Symposium, Ft. Lauderdale, Florida. 2008:159-163.
    [23] AHLES MD. Some aspects of the morphology and physiology of Symbiodinium microadriaticum[D]. New York:Doctoral Dissertation of Fordham University, 1967.
    [24] KINZIE RA, JOKIEL PL, YORK R. Effects of light of altered spectral composition on coral zooxanthellae associations and on zooxanthellae in vitro[J]. Marine Biology, 1984, 78(3):239-248.
    [25] FITT WK. Chemosensory responses of the symbiotic dinoflagellate Symbiodinium microadriaticum (Dinophyceae)[J]. Journal of Phycology, 1985, 21(1):62-67.
    [26] SANTOS SR, TAYLOR DJ, COFFROTH MA. Genetic comparisons of freshly isolated versus cultured symbiotic dinoflagellates:implications for extrapolating to the intact symbiosis[J]. Journal of Phycology, 2001, 37(5):900-912.
    [27] XIANG T, HAMBLETON EA, DENOFRIO JC, PRINGLE JR, GROSSMAN AR. Isolation of clonal axenic strains of the symbiotic dinoflagellate Symbiodinium and their growth and host specificity(1)[J]. Journal of Phycology, 2013, 49(3):447-458.
    [28] 朱葆华. 几种腔肠动物共生藻的离体培养及其相关的生理学研究[D]. 青岛:中国科学院研究生院(海洋研究所)博士学位论文, 2005. ZHU BH. In vitro culture of symbiotic algae of several coelenterates and related physiological studies[D]. Qingdao:Doctoral Dissertation of Institute of Oceanology, Chinese Academy of Sciences, 2005(in Chinese).
    [29] 沈城. 温度胁迫对珊瑚共生虫黄藻超微结构及相关基因表达的影响[D]. 湛江:广东海洋大学硕士学位论文, 2014. SHEN C. Effect of temperature stress on ultrastructure and related gene expression of Chrysophyta coral symbiosis[D]. Zhanjiang:Master's Thesis of Guangdong Ocean University, 2014(in Chinese).
    [30] 黄思军, 邱晨, 龙超, 龙丽娟. 三亚湾珊瑚来源虫黄藻不同株系微环境中微生物群落结构的差异比较分析[J]. 热带海洋学报, 2022(6):90-104. HUANG SJ, QIU C, LONG C, LONG LJ. Phycosphere microbial communities of zooxanthellae cultures isolated from corals in Sanya Bay, South China Sea[J]. Journal of Tropical Oceanography, 2022(6):90-104(in Chinese).
    [31] WANG J, CHEN J, WANG S, LI F, FU C, WANG Y. Monoclonal culture and characterization of Symbiodiniaceae C1 strain from the scleractinian coral Galaxea fascicularis[J]. Frontiers in Physiology, 2020, 11:621111.
    [32] GONG S, LI G, JIN X, QIU D, LIANG J, YU K, TAN Y, MA X, XIA X. Photobleaching and recovery of Symbiodiniaceae Effrenium voratum SCS01 reveals life form transformation under thermal stress[J]. Frontiers in Marine Science, 2021, 8:740416.
    [33] CHEN B, YU K, LIANG J, HUANG W, WANG G, SU H, QIN Z, HUANG X, PAN Z, LUO W, LUO Y, WANG Y. Latitudinal variation in the molecular diversity and community composition of Symbiodiniaceae in coral from the South China Sea[J]. Frontiers in Microbiology, 2019, 10:1278.
    [34] CHEN B, YU K, QIN Z, LIANG J, WANG G, HUANG X, WU Q, JIANG L. Dispersal, genetic variation, and symbiont interaction network of heat-tolerant endosymbiont Durusdinium trenchii:insights into the adaptive potential of coral to climate change[J]. Science of the Total Environment, 2020, 723:138026.
    [35] YOSHIOKA Y, YAMASHITA H, SUZUKI G, ZAYASU Y, TADA I, KANDA M, SATOH N, SHOGUCHI E, SHINZATO C. Whole-genome transcriptome analyses of native symbionts reveal host coral genomic novelties for establishing coral-algae symbioses[J]. Genome Biology and Evolution, 2021, 13(1):evaa240.
    [36] MIRIAM PF. A novel technique for preparation of axenic cultures of Symbiodinium (Pyrrophyta) through selective digestion by amoebae[J]. Journal of Phycology, 1991, 27(4):552-554.
    [37] GROSSMAN WRSA. Differences in the protein profiles of cultured and endosymbiotic Symbiodinium sp. (Pyrrophyta) from the anemone Aiptasia pallida (Anthozoa)[J]. Journal of Phycology, 1997(33):44-53.
    [38] CHAKRAVARTI LJ, BELTRAN VH, van OPPEN MJH. Rapid thermal adaptation in photosymbionts of reef-building corals[J]. Global Change Biology, 2017, 23(11):4675-4688.
    [39] 龙超, 罗肇河, 韦章良, 杨芳芳, 李茹, 龙丽娟. 海南三亚鹿回头虫黄藻(Effrenium voratum)的形态学和系统发育学研究[J]. 热带海洋学报, 2021(4):35-43. LONG C, LUO ZH, WEI ZL, YANG FF, LI R, LONG LJ. Morphology and phylogeny of zooxanthellae Effrenium voratum from Luhuitou reef in Sanya, Hainan Province[J]. Journal of Tropical Oceanography, 2021(4):35-43(in Chinese).
    [40] GUILLARD R, HARGRAVES PE. Stichochrysis immobilis is a diatom, not a chrysophyte[J]. Phycologia, 1993, 32(3):234-236.
    [41] ROWAN R, POWERS D. Molecular genetic identification of symbiotic dinoflagellates (zooxanthellae)[J]. Marine Ecology Progress Series, 1991, 71:65-73.
    [42] SANTOS SR, TAYLOR DJ, KINZIE RA, HIDAKA M, SAKAI K, COFFROTH MA. Molecular phylogeny of symbiotic dinoflagellates inferred from partial chloroplast large subunit (23S)-rDNA sequences[J]. Molecular Phylogenetics and Evolution, 2002, 23(2):97-111.
    [43] LAJEUNESSE TC, TRENCH RK. Biogeography of two species of Symbiodinium (Freudenthal) inhabiting the intertidal sea anemone Anthopleura elegantissima (Brandt)[J]. The Biological Bulletin, 2000, 199(2):126-134.
    [44] COLEMAN AW, SUAREZ A, GOFF LJ. Molecular delineation of species and syngens in volvocacean green algae (Chlorophyta)[J]. Journal of Phycology, 1994, 30(1):80-90.
    [45] ZARDOYA R, COSTAS E, LOPEZ-RODAS V, GARRIDO-PERTIERRA A, BAUTISTA JM. Revised dinoflagellate phylogeny inferred from molecular analysis of large-subunit ribosomal RNA gene sequences[J]. Journal of Molecular Evolution, 1995, 41(5):637-645.
    [46] SHI T, NIU G, KVITT H, ZHENG X, QIN Q, SUN D, JI Z, TCHERNOV D. Untangling ITS2 genotypes of algal symbionts in zooxanthellate corals[J]. Molecular Ecology Resources, 2021, 21(1):137-152.
    [47] LIN MF, TAKAHASHI S, FORÊT S, DAVY SK, MILLER DJ. Transcriptomic analyses highlight the likely metabolic consequences of colonization of a cnidarian host by native or non-native Symbiodinium species[J]. Biology Open, 2019, 8(3):bio038281.
    [48] KRUEGER T, GATES RD. Cultivating endosymbionts-host environmental mimics support the survival of Symbiodinium C15 ex hospite[J]. Journal of Experimental Marine Biology and Ecology, 2012, 413:169-176.
    [49] ZHU Z, LIU Q. Enhanced transport of nutrients powered by microscale flows of the self-spinning dinoflagellate Symbiodinium sp.[J]. Journal of Experimental Biology, 2019, 222(8):b197947.
    [50] JEONG HJ, YOO YD, KANG NS, LIM AS, SEONG KA, LEE SY, LEE MJ, LEE KH, KIM HS, SHIN W, NAM SW, YIH W, LEE K. Heterotrophic feeding as a newly identified survival strategy of the dinoflagellate Symbiodinium[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(31):12604-12609.
    [51] MAIRE J, GIRVAN SK, BARKLA SE, PEREZ-GONZALEZ A, SUGGETT DJ, BLACKALL LL, van OPPEN MJH. Intracellular bacteria are common and taxonomically diverse in cultured and in hospite algal endosymbionts of coral reefs[J]. The ISME Journal, 2021, 15(7):2028-2042.
    [52] LEE MJ, JEONG HJ, JANG SH, LEE SY, KANG NS, LEE KH, KIM HS, WHAM DC, LAJEUNESSE TC. Most low-abundance "background" Symbiodinium spp. are transitory and have minimal functional significance for symbiotic corals[J]. Microbial Ecology, 2016, 71(3):771-783.
    [53] 张军毅, 孙蓓丽, 朱冰川, 石浚哲, 周克茹, 吕学研, 葛芹玉, 张咏, 陆祖宏, 张虎军. 基于分子标记的藻类鉴定研究进展[J]. 湖泊科学, 2021(6):1607-1625. ZHANG JY, SUN BL, ZHU BC, SHI JZ, ZHOU KR, LV XY, GE QY, ZHANG Y, LU ZH, ZHANG HJ. Research progress in the taxonomic identification of algae on the basis of molecular markers[J]. Journal of Lake Sciences, 2021(6):1607-1625(in Chinese).
    [54] LAJEUNESSE TC, WHAM DC, PETTAY DT, PARKINSON JE, KESHAVMURTHY S, CHEN CA. Ecologically differentiated stress-tolerant endosymbionts in the dinoflagellate genus Symbiodinium (Dinophyceae) Clade D are different species[J]. Phycologia, 2014, 53(4):305-319.
    [55] YAMASHITA H, KOIKE K. Genetic identity of free-living Symbiodinium obtained over a broad latitudinal range in the Japanese coast[J]. Phycological Research, 2013, 61(1):68-80.
    [56] LaJEUNESSE TC, THORNHILL DJ. Improved resolution of reef-coral endosymbiont (Symbiodinium) species diversity, ecology, and evolution through psbA non-coding region genotyping[J]. PLoS One, 2011, 6(12):e29013.
    [57] STAT M, POCHON X, COWIE RO, GATES RD. Specificity in communities of Symbiodinium in corals from Johnston Atoll[J]. Marine Ecology Progress Series, 2009, 386:83-96.
    引证文献
引用本文

覃良云,许勇前,陈金妮,牛天祎,余克服,梁甲元. 造礁石珊瑚共生虫黄藻离体培养方法的优化[J]. 微生物学报, 2023, 63(4): 1658-1671

复制
分享
文章指标
  • 点击次数:433
  • 下载次数: 1324
  • HTML阅读次数: 1524
  • 引用次数: 0
历史
  • 收稿日期:2022-09-02
  • 最后修改日期:2023-01-01
  • 在线发布日期: 2023-04-06
文章二维码