基于盐酸硫胺保护的荧光铜纳米簇的制备及其对微生物样品中铁离子的特异性检测
作者:
基金项目:

国家自然科学基金(82073830)


Aneurine hydrochloride protected fluorescent copper nanoclusters: preparation and application in the specific detection of Fe3+ in microbial samples
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [33]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】采用盐酸硫胺(aneurine hydrochloride, VB1)作为保护配体和还原剂,制备荧光稳定的VB1保护的铜纳米簇(aneurine hydrochloride protected copper nanoclusters, VB1-Cu NCs),并用于痕量Fe3+的检测。【方法】使用VB1作为保护配体和还原剂,合成VB1-Cu NCs。通过紫外-可见吸收光谱、荧光光谱和粒径进行表征,并探究了VB1-Cu NCs的pH响应性、对Fe3+的选择性以及线性范围。【结果】制备的VB1-Cu NCs具有良好的水溶性,优异的稳定性和超细的尺寸。VB1-Cu NCs作为荧光探针检测Fe3+,在0–5 μmol/L和5–500μmol/L范围内均呈良好的线性,检测限为0.085 μmol/L。利用该方法检测实际微生物样品毛癣菌(Trichophyton)中的Fe3+,回收率在95.67%–107.94%之间。【结论】以VB1作为保护配体和还原剂,制备了具有稳定荧光的VB1-Cu NCs,基于该铜纳米簇对Fe3+的选择性淬灭,建立了一种简单快速且灵敏的检测Fe3+的新方法,并成功应用于毛癣菌中Fe3+的检测,在实际微生物样品中具有较好的应用前景。

    Abstract:

    [Objective] To prepare the fluorescent stable aneurine hydrochloride (VB1)-protected copper nanoclusters with VB1 as a protective ligand and reducing agent for the detection of trace amounts of Fe3+. [Methods] We used VB1 as a protective ligand and reducing agent to synthesize VB1-protected copper nanoclusters. Then, we characterized the copper nanoclusters by UV visible absorption spectrum, fluorescence spectrum, and particle size, and explored their pH responsiveness, selectivity to Fe3+, and linear range in the detection of Fe3+. [Results] The prepared VB1-protected copper nanoclusters had good water solubility, excellent stability, and ultrafine size. As the fluorescent probes to detect Fe3+, the copper nanoclusters showed good linearity in the ranges of 0–5 μmol/L and 5–500 μmol/L, with the limit of detection of 0.085 μmol/L. When being used to detect Fe3+ in the actual microbial sample of Trichophyton, the copper nanoclusters showed the recovery rate between 95.67% and 107.94%. [Conclusion] We used VB1 as a protective ligand and reducing agent to prepare fluorescent stable VB1-protected copper nanoclusters. On the basis of the selective quenching of Fe3+ by the copper nanoclusters, we established a simple, rapid, and sensitive method for the detection of Fe3+ and successfully applied it to the detection of Fe3+ in Trichophyton. This method has a good application prospect in actual microbial samples.

    参考文献
    [1] RESCH-GENGER U, GRABOLLE M, CAVALIERE-JARICOT S, NITSCHKE R, NANN T. Quantum dots versus organic dyes as fluorescent labels[J]. Nature Methods, 2008, 5(9):763-775.
    [2] TAO Y, LI MQ, REN JS, QU XG. Metal nanoclusters:novel probes for diagnostic and therapeutic applications[J]. Chemical Society Reviews, 2015, 44(23):8636-8663.
    [3] CHEN PC, PERIASAMY AP, HARROUN SG, WU WP, CHANG HT. Photoluminescence sensing systems based on copper, gold and silver nanomaterials[J]. Coordination Chemistry Reviews, 2016, 320-321:129-138.
    [4] LI J, ZHU J, XU K. Fluorescent metal nanoclusters:from synthesis to applications[J]. TRAC:Trends in Analytical Chemistry, 2014, 58:90-98.
    [5] QIAO Z, ZHANG J, HAI X, YAN Y, SONG W, BI S. Recent advances in templated synthesis of metal nanoclusters and their applications in biosensing, bioimaging and theranostics[J]. Biosensors & Bioelectronics, 2021, 176:112898.
    [6] YANG JL, PENG Y, LI SR, MU J, HUANG ZZ, MA JT, SHI Z, JIA Q. Metal nanocluster-based hybrid nanomaterials:fabrication and application[J]. Coordination Chemistry Reviews, 2022, 456:214391.
    [7] TANG Q, YANG TT, HUANG YM. Copper nanocluster-based fluorescent probe for hypochlorite[J]. Mikrochimica Acta, 2015, 182:2337-2343.
    [8] ZHANG S, ZHANG XY, SU ZQ. Biomolecule conjugated metal nanoclusters:bio-inspiration strategies, targeted therapeutics, and diagnostics[J]. Journal of Materials Chemistry B, 2020, 8(19):4176-4194.
    [9] HAN A, XIONG L, HAO S, YANG Y, LI X, FANG G, LIU J, PEI Y, WANG S. Highly bright self-assembled copper nanoclusters:a novel photoluminescent probe for sensitive detection of histamine[J]. Analytical Chemistry, 2018, 90(15):9060-9067.
    [10] BABU BUSI K, PALANIVEL M, KANTA GHOSH K, BASU BALL W, GULYÁS B, PADMANABHAN P, CHAKRABORTTY S. The multifarious applications of copper nanoclusters in biosensing and bioimaging and their translational role in early disease detection[J]. Nanomaterials:Basel, Switzerland, 2022, 12(3):301.
    [11] KALYTCHUK S, ZHOVTIUK O, ROGACH AL. Sodium chloride protected CdTe quantum dot based solid-state luminophores with high color quality and fluorescence efficiency[J]. Applied Physics Letters, 2013, 103(10):103105.
    [12] LV S, LI Y, ZHANG K, LIN Z, TANG D. Carbon dots/g-C3N4 nanoheterostructures-based signal-generation tags for photoelectrochemical immunoassay of cancer biomarkers coupling with copper nanoclusters[J]. ACS Applied Materials & Interfaces, 2017, 9(44):38336-38343.
    [13] HU X, LIU TT, ZHUANG YX, WANG W, LI YY, FAN WH, HUANG YM. Recent advances in the analytical applications of copper nanoclusters[J]. TRAC:Trends in Analytical Chemistry, 2016, 77:66-75.
    [14] WU XM, ZHANG F, LI Y. Facile synthesis of near-infrared emitting dBSA-templated Cu nanoclusters for sensitive detection of heparin[J]. Journal of Materials Chemistry B, 2018, 6(34):5466-5475.
    [15] SHELLAIAH M, SIMON T, THIRUMALAIVASAN N, SUN KW, KO FH, WU SP. Cysteamine-capped gold-copper nanoclusters for fluorometric determination and imaging of chromium(VI) and dopamine[J]. Mikrochimica Acta, 2019, 186(12):788.
    [16] LUO T, ZHANG S, WANG Y, WANG M, LIAO M, KOU X. Glutathione-stabilized Cu nanocluster-based fluorescent probe for sensitive and selective detection of Hg2+ in water[J]. Luminescence, 2017, 32(6):1092-1099.
    [17] FENG J, CHEN YL, HAN YX, LIU JJ, MA SD, ZHANG HG, CHEN XG. pH-regulated synthesis of trypsin-templated copper nanoclusters with blue and yellow fluorescent emission[J]. ACS Omega, 2017, 2(12):9109-9117.
    [18] XUE Y, CHENG Z, LUO M, HU H, XIA C. Synthesis of copper nanocluster and its application in pollutant analysis[J]. Biosensors:Basel, Switzerland, 2021, 11(11):424.
    [19] CHANDRAN N, JANARDHANAN P, BAYAL M, UNNIYAMPURATH U, PILANKATTA R, NAIR SS. Label free, nontoxic Cu-GSH NCs as a nanoplatform for cancer cell imaging and subcellular pH monitoring modulated by a specific inhibitor:bafilomycin A1[J]. ACS Applied Bio Materials, 2020, 3(2):1245-1257.
    [20] HUANG H, LI H, FENG JJ, FENG H, WANG AJ. One-pot green synthesis of highly fluorescent glutathione-stabilized copper nanoclusters for Fe3+ sensing[J]. Sensors and Actuators B:Chemical, 2017, 241:292-297.
    [21] LIAO XQ, LI RY, LI ZJ, SUN XL, WANG ZP, LIU JK. Fast synthesis of copper nanoclusters through the use of hydrogen peroxide additive and their application for the fluorescence detection of Hg2+ in water samples[J]. New Journal of Chemistry, 2015, 39(7):5240-5248.
    [22] ZECCA L, YOUDIM MB, RIEDERER P, CONNOR JR, CRICHTON RR. Iron, brain ageing and neurodegenerative disorders[J]. Nature Reviews Neuroscience, 2004, 5(11):863-873.
    [23] HO JA, CHANG HC, SU WT. DOPA-mediated reduction allows the facile synthesis of fluorescent gold nanoclusters for use as sensing probes for ferric ions[J]. Analytical Chemistry, 2012, 84(7):3246-3253.
    [24] WANG Y, LAO S, DING W, ZHANG Z, LIU S. A novel ratiometric fluorescent probe for detection of iron ions and zinc ions based on dual-emission carbon dots[J]. Sensors and Actuators B:Chemical, 2019, 284:186-192.
    [25] ZHANG Z, XUE W, YANG J, ZHAO Y, GUO J. Discriminating detection of dissolved ferrous and ferric ions using copper nanocluster-based fluorescent probe[J]. Analytical Biochemistry, 2021, 623:114171.
    [26] KARDAR ZS, SHEMIRANI F, ZADMARD R. Determination of iron(II) and iron(III) via static quenching of the fluorescence of tryptophan-protected copper nanoclusters[J]. Mikrochimica Acta, 2020, 187(1):81.
    [27] ZHANG S, ZHANG C, SHAO XD, GUAN RT, HU YY, ZHANG KY, LIU WJ, HONG M, YUE QL. Dual-emission ratio fluorescence for selective and sensitive detection of ferric ions and ascorbic acid based on one-pot synthesis of glutathione protected gold nanoclusters[J]. RSC Advances, 2021, 11(28):17283-17290.
    [28] LI H, HUANG H, FENG JJ, LUO X, FANG KM, WANG ZG, WANG AJ. A polypeptide-mediated synthesis of green fluorescent gold nanoclusters for Fe3+ sensing and bioimaging[J]. Journal of Colloid and Interface Science, 2017, 506:386-392.
    [29] de SERRANO LO, CAMPER AK, RICHARDS AM. An overview of siderophores for iron acquisition in microorganisms living in the extreme[J]. Biometals, 2016, 29(4):551-571.
    [30] DEVAUX F, THIÉBAUT A. The regulation of iron homeostasis in the fungal human pathogen Candida glabrata[J]. Microbiology:Reading, England, 2019, 165(10):1041-1060.
    [31] BHAMORE JR, JHA S, BASU H, SINGHAL RK, MURTHY ZVP, KAILASA SK. Tuning of gold nanoclusters sensing applications with bovine serum albumin and bromelain for detection of Hg2+ ion and lambda-cyhalothrin via fluorescence turn-off and on mechanisms[J]. Analytical and Bioanalytical Chemistry, 2018, 410(11):2781-2791.
    [32] JIA YX, SUN TX, JIANG YN, SUN WY, ZHAO Y, XIN JW, HOU YT, YANG WS. Green, fast, and large-scale synthesis of highly fluorescent Au nanoclusters for Cu2+ detection and temperature sensing[J]. Analyst, 2018, 143(21):5145-5150.
    [33] GUAN RT, TAO LX, HU YY, ZHANG C, WANG YP, HONG M, YUE QL. Selective determination of Ag+ in the presence of Cd2+, Hg2+ and Cu2+ based on their different interactions with gold nanoclusters[J]. RSC Advances, 2020, 10(55):33299-33306.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨晓茜,谢亚芳,陈都,付爱玲. 基于盐酸硫胺保护的荧光铜纳米簇的制备及其对微生物样品中铁离子的特异性检测[J]. 微生物学报, 2023, 63(4): 1672-1680

复制
分享
文章指标
  • 点击次数:214
  • 下载次数: 791
  • HTML阅读次数: 619
  • 引用次数: 0
历史
  • 收稿日期:2022-09-02
  • 最后修改日期:2022-11-23
  • 在线发布日期: 2023-04-06
文章二维码