我国产甲烷古菌研究进展与展望
作者:
基金项目:

国家自然科学基金(92051108);中国农业科学院科技创新工程项目(CAASASTIP-2016-BIOMA);中央级公益性科研院所基本科研业务费专项(1610012023002,1610012023003);海南省重点研发计划(ZDYF2021XDNY300)


Methanogen research in China: current status and prospective
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [169]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    产甲烷古菌广泛分布在湿地、水稻田、动物瘤胃、油藏、海洋和热液等缺氧环境,在全球碳素循环、气候变化和清洁能源生产等领域发挥着重要作用,一直是国内外的研究热点。本文简要回顾了我国产甲烷古菌的研究进展,重点阐述了产甲烷古菌的资源与分类、生理生化、分子生物学、生态学功能和应用等方面的研究进展,并展望了产甲烷古菌的未来研究趋势。

    Abstract:

    Methanogens are widely distributed in anaerobic environments, such as wetlands, paddy fields, animal rumens, oil reservoirs, oceans, and hydrothermal vents. They play critical roles in global carbon cycling, climate change, and clean energy production, making them a hot research topic both domestically and internationally. This article briefly reviews the research progress of methanogens in China, focusing on their resources and taxonomy, physiology and biochemistry, molecular biology, ecological roles, and applications. The future research trends of methanogens are also highlighted.

    参考文献
    [1] EVANS PN, BOYD JA, LEU AO, WOODCROFT BJ, PARKS DH, HUGENHOLTZ P, TYSON GW. An evolving view of methane metabolism in the archaea[J]. Nature Reviews Microbiology, 2019, 17(4):219-232.
    [2] KIRSCHKE S, BOUSQUET P, CIAIS P, SAUNOIS M, CANADELL JG, DLUGOKENCKY EJ, BERGAMASCHI P, BERGMANN D, BLAKE DR, BRUHWILER L. Three decades of global methane sources and sinks[J]. Nature Geoscience, 2013, 6(10):813-823.
    [3] MYHRE G, SHINDELL D, BRÉON FM, COLLINS W, FUGLESTVEDT J, HUANG J, KOCH D, LAMARQUE JF, LEE D, MENDOZA B, NAKAJIMA T, ROBOCK A, STEPHENS G, TAKEMURA T, ZHANG H. Climate Change 2013-the Physical Science Basis[M]. Cambridge:Cambridge University Press, 2014:659-740.
    [4] SPEECE RE. Anaerobic biotechnology for industrial wastewater treatment[J]. Environmental Science & Technology, 1983, 17(9):416A-427A.
    [5] STEPHENSON M, STICKLAND LH. Hydrogenase:the bacterial formation of methane by the reduction of one-carbon compounds by molecular hydrogen[J]. The Biochemical Journal, 1933, 27(5):1517-1527.
    [6] 周孟津, 杨秀山. 甲烷八叠球菌的纯培养、分离和鉴定. 微生物学通报, 1983, 6:3-5+56. ZHOU MJ, YANG XS. Pure cultivation, isolation and identification of Methanosarcina sp.[J]. Microbiology China, 1983, 10(6):241-244(in Chinese).
    [7] MA K, LIU XL, DONG XZ. Methanobacterium beijingense sp. nov., a novel methanogen isolated from anaerobic digesters[J]. International Journal of Systematic and Evolutionary Microbiology, 2005, 55(Pt 1):325-329.
    [8] CHENG L, QIU TL, YIN XB, WU XL, HU GQ, DENG Y, ZHANG H. Methermicoccus shengliensis gen. nov., sp. nov., a thermophilic, methylotrophic methanogen isolated from oil-production water, and proposal of Methermicoccaceae fam. nov[J]. International Journal of Systematic and Evolutionary Microbiology, 2007, 57(Pt 12):2964-2969.
    [9] ZHU J, LIU X, DONG X. Methanobacterium movens sp. nov. and Methanobacterium flexile sp. nov., isolated from lake sediment[J]. International Journal of Systematic and Evolutionary Microbiology, 2011, 61(Pt 12):2974-2978.
    [10] LÜ Z, LU YH. Methanocella conradii sp. nov., a thermophilic, obligate hydrogenotrophic methanogen, isolated from Chinese rice field soil[J]. PLoS One, 2012, 7(4):e35279.
    [11] LIANG L, SUN Y, DONG Y, AHMAD T, CHEN Y, WANG J, WANG F. Methanococcoides orientis sp. nov., a methylotrophic methanogen isolated from sediment of the East China Sea[J]. International Journal of Systematic and Evolutionary Microbiology, 2022, 72(5):005384.
    [12] TIAN J, WANG Y, DONG X. Methanoculleus hydrogenitrophicus sp. nov., a methanogenic archaeon isolated from wetland soil[J]. International Journal of Systematic and Evolutionary Microbiology, 2010, 60(Pt 9):2165-2169.
    [13] CHENG L, QIU TL, LI X, WANG WD, DENG Y, YIN XB, ZHANG H. Isolation and characterization of Methanoculleus receptaculi sp. nov. from Shengli oil field, China[J]. FEMS Microbiology Letters, 2008, 285(1):65-71.
    [14] CHEN SC, CHEN MF, LAI MC, WENG CY, WU SY, LIN S, YANG TF, CHEN PC. Methanoculleus sediminis sp. nov., a methanogen from sediments near a submarine mud volcano[J]. International Journal of Systematic and Evolutionary Microbiology, 2015, 65(7):2141-2147.
    [15] CHEN SC, TENG NH, LIN YS, LAI MC, CHEN HH, WANG CC. Methanofollis fontis sp. nov., a methanogen isolated from marine sediment near a cold seep at Four-Way Closure Ridge offshore southwestern Taiwan[J]. International Journal of Systematic and Evolutionary Microbiology, 2020, 70(10):5497-5502.
    [16] SHEN Y, CHEN SC, LAI MC, HUANG HH, CHIU HH, TANG SL, ROGOZIN DY, Degermendzhy AG. Methanolobus halotolerans sp. nov., isolated from the saline Lake Tus in Siberia[J]. International Journal of Systematic and Evolutionary Microbiology, 2020, 70(10):5586-5593.
    [17] MA K, LIU XL, DONG XZ. Methanosaeta harundinacea sp. nov., a novel acetate-scavenging methanogen isolated from a UASB reactor[J]. International Journal of Systematic and Evolutionary Microbiology, 2006, 56(Pt 1):127-131.
    [18] ZHOU L, LIU X, Dong XZ. Methanospirillum psychrodurum sp. nov., isolated from wetland soil[J]. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(Pt 2):638-641.
    [19] CHENG L, DAI LR, LI X, ZHANG H, LU YH. Isolation and characterization of Methanothermobacter crinale sp. nov., a novel hydrogenotrophic methanogen from the Shengli oil field[J]. Applied and Environmental Microbiology, 2011, 77(15):5212-5219.
    [20] EVANS PN, PARKS DH, CHADWICK GL, ROBBINS SJ, ORPHAN VJ, GOLDING SD, TYSON GW. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics[J]. Science, 2015, 350(6259):434-438.
    [21] WANG YL, HUA ZS, GOH KM, EVANS P, LIU L, MAO YP, HUGENHOLTZ P, TYSON G, LI WJ, ZHANG T. Further expansion of methane metabolism in the archaea[J]. bioRxiv, 2018:312082.
    [22] McKAY LJ, DLAKIĆ M, FIELDS MW, DELMONT TO, EREN AM, JAY ZJ, KLINGELSMITH KB, RUSCH DB, INSKEEP WP. Co-occurring genomic capacity for anaerobic methane and dissimilatory sulfur metabolisms discovered in the Korarchaeota[J]. Nature Microbiology, 2019, 4(4):614-622.
    [23] WANG YZ, WEGENER G, HOU JL, WANG FP, XIAO X. Expanding anaerobic alkane metabolism in the domain of archaea[J]. Nature Microbiology, 2019, 4(4):595-602.
    [24] BORREL G, HARRIS HMB, TOTTEY W, MIHAJLOVSKI A, PARISOT N, PEYRETAILLADE E, PEYRET P, GRIBALDO S, O'TOOLE PW, BRUGÈRE JF. Genome sequence of "Candidatus Methanomethylophilus alvus" Mx1201, a methanogenic archaeon from the human gut belonging to a seventh order of methanogens[J]. Journal of Bacteriology, 2012, 194(24):6944-6945.
    [25] LANG K, SCHULDES J, KLINGL A, POEHLEIN A, DANIEL R, BRUNEA A. New mode of energy metabolism in the seventh order of methanogens as revealed by comparative genome analysis of "Candidatus Methanoplasma termitum"[J]. Applied and Environmental Microbiology, 2015, 81(4):1338-1352.
    [26] IINO T, TAMAKI H, TAMAZAWA S, UENO Y, OHKUMA M, SUZUKI KI, IGARASHI Y, HARUTA S. Candidatus Methanogranum caenicola:a novel methanogen from the anaerobic digested sludge, and proposal of Methanomassiliicoccaceae fam. nov. and Methanomassiliicoccales ord. nov., for a methanogenic lineage of the class Thermoplasmata[J]. Microbes and Environments, 2013, 28(2):244-250.
    [27] GILROY R, RAVI A, GETINO M, PURSLEY I, HORTON DL, ALIKHAN NF, BAKER D, GHARBI K, HALL N, WATSON M, ADRIAENSSENS EM, FOSTER-NYARKO E, JARJU S, SECKA A, ANTONIO M, OREN A, CHAUDHURI RR, la RAGIONE R, HILDEBRAND F, PALLEN MJ. Extensive microbial diversity within the chicken gut microbiome revealed by metagenomics and culture[J]. PeerJ, 2021, 9:e10941.
    [28] OU YF, DONG HP, MCILROY SJ, CROWE SA, HALLAM SJ, HAN P, KALLMEYER J, SIMISTER RL, VUILLEMIN A, LEU AO, LIU ZF, ZHENG YL, SUN QL, LIU M, TYSON GW, HOU LJ. Expanding the phylogenetic distribution of cytochrome b-containing methanogenic archaea sheds light on the evolution of methanogenesis[J]. The ISME Journal, 2022, 16(10):2373-2387.
    [29] VANWONTERGHEM I, EVANS PN, PARKS DH, JENSEN PD, WOODCROFT BJ, HUGENHOLTZ P, TYSON GW. Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota[J]. Nature Microbiology, 2016, 1:16170.
    [30] BERGHUIS BA, YU FB, SCHULZ F, BLAINEY PC, WOYKE T, QUAKE SR. Hydrogenotrophic methanogenesis in archaeal phylum Verstraetearchaeota reveals the shared ancestry of all methanogens[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(11):5037-5044.
    [31] SOROKIN DY, MAKAROVA KS, ABBAS B, FERRER M, GOLYSHIN PN, GALINSKI EA, CIORDIA S, MENA MC, MERKEL AY, WOLF YI, van LOOSDRECHT MCM, KOONIN EV. Discovery of extremely halophilic, methyl-reducing euryarchaea provides insights into the evolutionary origin of methanogenesis[J]. Nature Microbiology, 2017, 2:17081.
    [32] NOBU MK, NARIHIRO T, KURODA K, MEI R, LIU WT. Chasing the elusive Euryarchaeota class WSA2:genomes reveal a uniquely fastidious methyl-reducing methanogen[J]. The ISME Journal, 2016, 10(10):2478-2487.
    [33] BORREL G, ADAM PS, MCKAY LJ, CHEN LX, SIERRA-GARCÍA IN, SIEBER CMK, LETOURNEUR Q, GHOZLANE A, ANDERSEN GL, LI WJ, HALLAM SJ, MUYZER G, de OLIVEIRA VM, INSKEEP WP, BANFIELD JF, GRIBALDO S. Wide diversity of methane and short-chain alkane metabolisms in uncultured archaea[J]. Nature Microbiology, 2019, 4(4):603-613.
    [34] MONDAV R, WOODCROFT BJ, KIM EH, MCCALLEY CK, HODGKINS SB, CRILL PM, CHANTON J, HURST GB, VERBERKMOES NC, SALESKA SR, HUGENHOLTZ P, RICH VI, TYSON GW. Discovery of a novel methanogen prevalent in thawing permafrost[J]. Nature Communications, 2014, 5:3212.
    [35] LIU YF, CHEN J, ZARAMELA LS, WANG LY, MBADINGA SM, HOU ZW, WU XL, GU JD, ZENGLER K, MU BZ. Genomic and transcriptomic evidence supports methane metabolism in Archaeoglobi[J]. mSystems, 2020, 5(2):e00651-e00619.
    [36] 承磊, 郑珍珍, 王聪, 张辉. 产甲烷古菌研究进展[J]. 微生物学通报, 2016, 43(5):1143-1164 CHENG L, ZHENG ZZ, WANG C, ZHANG H. Recent advances in methanogens[J]. Microbiology China, 2016, 43(5):1143-1164 (in Chinese).
    [37] LYU Z, SHAO NN, AKINYEMI T, WHITMAN WB. Methanogenesis[J]. Current Biology:CB, 2018, 28(13):R727-R732.
    [38] DRIDI B, FARDEAU ML, OLLIVIER B, RAOULT D, DRANCOURT M. Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces[J]. International Journal of Systematic and Evolutionary Microbiology, 2012, 62(Pt 8):1902-1907.
    [39] ROTARU AE, SHRESTHA PM, LIU FH, SHRESTHA M, SHRESTHA D, EMBREE M, ZENGLER K, WARDMAN C, NEVIN KP, LOVLEY DR. A new model for electron flow during anaerobic digestion:direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane[J]. Energy & Environmental Science, 2014, 7(1):408-415.
    [40] MAYUMI D, MOCHIMARU H, TAMAKI H, YAMAMOTO K, YOSHIOKA H, SUZUKI Y, KAMAGATA Y, SAKATA S. Methane production from coal by a single methanogen[J]. Science, 2016, 354(6309):222-225.
    [41] ZHOU Z, ZHANG CJ, LIU PF, FU L, LASO-PÉREZ R, YANG L, BAI LP, LI J, YANG M, LIN JZ, WANG WD, WEGENER G, LI M, CHENG L. Non-syntrophic methanogenic hydrocarbon degradation by an archaeal species[J]. Nature, 2022, 601(7892):257-262.
    [42] DINESH G, SHALVARJIAN KATIE E, NAYAK DIPTI D. An archaea-specific c-type cytochrome maturation machinery is crucial for methanogenesis in Methanosarcina acetivorans[J]. eLife, 2022, 11:e76970.
    [43] FINK C, BEBLAWY S, ENKERLIN AM, MÜHLING L, ANGENENT LT, MOLITOR B. A shuttle-vector system allows heterologous gene expression in the thermophilic methanogen Methanothermobacter thermautotrophicus ΔH[J]. mBio, 2021, 12(6):e0276621.
    [44] BUAN N, KULKARNI G, METCALF W. Genetic methods for Methanosarcina species[J]. Methods in Enzymology, 2011, 494:23-42.
    [45] ALDRIDGE J, CARR S, WEBER KA, BUAN NR. Anaerobic production of isoprene by engineered Methanosarcina species archaea[J]. Applied and Environmental Microbiology, 2021, 87(6):e02417-e02420.
    [46] MOORE BC, LEIGH JA. Markerless mutagenesis in Methanococcus maripaludis demonstrates roles for alanine dehydrogenase, alanine racemase, and alanine permease[J]. Journal of Bacteriology, 2005, 187(3):972-979.
    [47] LI J, ZHANG LY, XU Q, ZHANG WT, LI ZH, CHEN L, DONG XZ. CRISPR-Cas9 toolkit for genome editing in an autotrophic CO2-fixing methanogenic archaeon[J]. Microbiology Spectrum, 2022, 10(4):e0116522.
    [48] QI L, YUE L, FENG DQ, QI FX, LI J, DONG XZ. Genome-wide mRNA processing in methanogenic archaea reveals post-transcriptional regulation of ribosomal protein synthesis[J]. Nucleic Acids Research, 2017, 45(12):7285-7298.
    [49] JIA J, LI J, QI L, LI LY, YUE L, DONG XZ. Post-transcriptional regulation is involved in the cold-active methanol-based methanogenic pathway of a psychrophilic methanogen[J]. Environmental Microbiology, 2021, 23(7):3773-3788.
    [50] CAO Y, LI J, JIANG N, DONG XZ. Mechanism for stabilizing mRNAs involved in methanol-dependent methanogenesis of cold-adaptive Methanosarcina mazei zm-15[J]. Applied and Environmental Microbiology, 2014, 80(4):1291-1298.
    [51] QI L, LI J, JIA J, YUE L, DONG XZ. Comprehensive analysis of the pre-ribosomal RNA maturation pathway in a methanoarchaeon exposes the conserved circularization and linearization mode in archaea[J]. RNA Biology, 2020, 17(10):1427-1441.
    [52] ZHANG B, YUE L, ZHOU LG, QI L, LI J, DONG XZ. Conserved TRAM domain functions as an archaeal cold shock protein via RNA chaperone activity[J]. Frontiers in Microbiology, 2017, 8:1597.
    [53] LI J, ZHANG B, ZHOU LG, QI L, YUE L, ZHANG WT, CHENG HC, WHITMAN WB, DONG XZ. The archaeal RNA chaperone TRAM0076 shapes the transcriptome and optimizes the growth of Methanococcus maripaludis[J]. PLoS Genetics, 2019, 15(8):e1008328.
    [54] YUE L, LI J, ZHANG B, QI L, LI ZH, ZHAO FQ, LI LY, ZHENG XW, DONG XZ. The conserved ribonuclease aCPSF1 triggers genome-wide transcription termination of archaea via a 3ʹ-end cleavage mode[J]. Nucleic Acids Research, 2020, 48(17):9589-9605.
    [55] LI J, ZHENG XW, LI LY, ZHANG SJ, REN MF, HUANG L, DONG XZ. The archaeal transcription termination factor aCPSF1 is a robust phylogenetic marker for archaeal taxonomy[J]. Microbiology Spectrum, 2021, 9(3):e0153921.
    [56] LI J, YUE L, LI ZH, ZHANG WT, ZHANG B, ZHAO FQ, DONG XZ. aCPSF1 cooperates with terminator U-tract to dictate archaeal transcription termination efficacy[J]. eLife, 2021, 10:e70464.
    [57] ZENG ZR, CHEN HH, YANG H, CHEN YF, YANG W, FENG X, PEI HY, WELANDER PV. Identification of a protein responsible for the synthesis of archaeal membrane-spanning GDGT lipids[J]. Nature Communications, 2022, 13:1545.
    [58] ZHANG JZ, LI T, HONG ZL, MA CF, FANG XT, ZHENG FF, TENG WK, ZHANG CL, SI T. Biosynthesis of hybrid neutral lipids with archaeal and eukaryotic characteristics in engineered Saccharomyces cerevisiae[J]. Angewandte Chemie (International Ed in English), 2023, 62(4):e202214344.
    [59] BRIDGHAM SD, CADILLO-QUIROZ H, KELLER JK, ZHUANG QL. Methane emissions from wetlands:biogeochemical, microbial, and modeling perspectives from local to global scales[J]. Global Change Biology, 2013, 19(5):1325-1346.
    [60] ZHANG YF, MA AZ, ZHUANG GQ, ZHUANG XL. The acetotrophic pathway dominates methane production in Zoige alpine wetland coexisting with hydrogenotrophic pathway[J]. Scientific Reports, 2019, 9:9141.
    [61] ZHANG GS, TIAN JQ, JIANG N, GUO XP, WANG YF, DONG XZ. Methanogen community in Zoige wetland of Tibetan Plateau and phenotypic characterization of a dominant uncultured methanogen cluster ZC-I[J]. Environmental Microbiology, 2008, 10(7):1850-1860.
    [62] YANG SZ, LIEBNER S, WINKEL M, ALAWI M, HORN F, DÖRFER C, OLLIVIER JF, HE J, JIN H, KÜHN P, SCHLOTER M, SCHOLTEN T, WAGNER D. In-depth analysis of core methanogenic communities from high elevation permafrost-affected wetlands[J]. Soil Biology & Biochemistry, 2017, 111:66-77.
    [63] SCHÖNHEIT P, KRISTJANSSON JK, THAUER RK. Kinetic mechanism for the ability of sulfate reducers to out-compete methanogens for acetate[J]. Archives of Microbiology, 1982, 132(3):285-288.
    [64] ZHANG CJ, PAN J, LIU Y, DUAN CH, LI M. Genomic and transcriptomic insights into methanogenesis potential of novel methanogens from mangrove sediments[J]. Microbiome, 2020, 8(1):94.
    [65] LI W, GUAN W, CHEN H, LIAO BW, HU J, PENG CH, RUI JP, TIAN JQ, ZHU D, HE YX. Archaeal communities in the sediments of different mangrove stands at Dongzhaigang, China[J]. Journal of Soils and Sediments, 2016, 16(7):1995-2004.
    [66] LI W, GUAN W, CHEN H, LIAO B, HU J, RUI JP, PENG C, ZHU D, HE YX, TIAN JQ. Variations of sediment archaea communities in different distribution areas of Bruguiera gymnoihiza mangrove in Dongzhaigang, China[J]. Polish Journal of Environmental Studies, 2019, 28(5):3343-3352.
    [67] DENG Y, LIU P, CONRAD R. Effect of temperature on the microbial community responsible for methane production in alkaline NamCo wetland soil[J]. Soil Biology and Biochemistry, 2019, 132:69-79.
    [68] LIU YQ, YAO TD, GLEIXNER G, CLAUS P, CONRAD R. Methanogenic pathways, 13C isotope fractionation, and archaeal community composition in lake sediments and wetland soils on the Tibetan Plateau[J]. Journal of Geophysical Research:Biogeosciences, 2013, 118(2):650-664.
    [69] LIU DY, DING WX, JIA ZJ, CAI ZC. The impact of dissolved organic carbon on the spatial variability of methanogenic archaea communities in natural wetland ecosystems across China[J]. Applied Microbiology and Biotechnology, 2012, 96(1):253-263.
    [70] LIU DY, DING W, JIA Z, CAI Z. Relation between methanogenic archaea and methane production potential in selected natural wetland ecosystems across China[J]. Biogeosciences, 2011, 8:329-338.
    [71] LI JJ, XIAO LL, ZHENG SL, ZHANG YC, LUO M, TONG C, XU HD, TAN Y, LIU J, WANG OM, LIU FH. A new insight into the strategy for methane production affected by conductive carbon cloth in wetland soil:beneficial to acetoclastic methanogenesis instead of CO2 reduction[J]. The Science of the Total Environment, 2018, 643:1024-1030.
    [72] 蒋娜, 陈紫娟, 曹轶, 田建卿, 王艳芬, 东秀珠. 低温湿地甲烷古菌及其介导的甲烷产生途径[J]. 微生物学通报, 2013, 40(1):137-145. JIANG N, CHEN ZJ, CAO Y, TIAN JQ, WANG YF, DONG XZ. Methanogenic archaea and their mediated methanogenic pathways in cold wetland[J]. Microbiology China, 2013, 40(1):137-145 (in Chinese).
    [73] LIN YX, LIU DY, DING WX, KANG H, FREEMAN C, YUAN JJ, XIANG J. Substrate sources regulate spatial variation of metabolically active methanogens from two contrasting freshwater wetlands[J]. Applied Microbiology and Biotechnology, 2015, 99(24):10779-10791.
    [74] SCHINK B, ZEIKUS JG. Microbial methanol formation:a major end product of pectin metabolism[J]. Current Microbiology, 1980, 4(6):387-389.
    [75] ZHANG Z, POULTER B, FELDMAN AF, YING Q, CIAIS P, PENG SS, LI X. Recent intensification of wetland methane feedback[J]. Nature Climate Change, 2023:1-4.
    [76] BAO T, JIA GS, XU XY. Weakening greenhouse gas sink of pristine wetlands under warming[J]. Nature Climate Change, 2023:1-8.
    [77] PENG SS, LIN X, THOMPSON RL, XI Y, LIU G, HAUGLUSTAINE D, LAN X, POULTER B, RAMONET M, SAUNOIS M, YIN Y, ZHANG Z, ZHENG B, CIAIS P. Wetland emission and atmospheric sink changes explain methane growth in 2020[J]. Nature, 2022, 612(7940):477-482.
    [78] YAN XY, AKIYAMA H, YAGI K, AKIMOTO H. Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 intergovernmental panel on climate change guidelines[J]. Global Biogeochemical Cycles, 2009, 23(2):20-23.
    [79] 闵航, 陈美慈, 钱泽澍. 水稻田的甲烷释放特性及其生物学机理[J]. 生态与农村环境学报, 1993, 9(S1):28-32, 42. MIN H, CHEN MC, QIAN ZS. Studies on characteristics of release of methane as well as biological mechanisms in rice paddy soil[J]. Journal of Ecology and Rural Environment, 1993, 9(S1):28-32, 42 (in Chinese).
    [80] KRÜGER M, FRENZEL P, KEMNITZ D, CONRAD R. Activity, structure and dynamics of the methanogenic archaeal community in a flooded Italian rice field[J]. FEMS Microbiology Ecology, 2005, 51(3):323-331.
    [81] YAO H, CONRAD R, WASSMANN R, NEUE HU. Effect of soil characteristics on sequential reduction and methane production in sixteen rice paddy soils from China, the Philippines, and Italy[J]. Biogeochemistry, 1999, 47(3):269-295.
    [82] LU YH, LUEDERS T, FRIEDRICH MW, CONRAD R. Detecting active methanogenic populations on rice roots using stable isotope probing[J]. Environmental Microbiology, 2005, 7(3):326-336.
    [83] LIU FH, CONRAD R. Thermoanaerobacteriaceae oxidize acetate in methanogenic rice field soil at 50℃[J]. Environmental Microbiology, 2010, 12(8):2341-2354.
    [84] WU XL, FRIEDRICH MW, CONRAD R. Diversity and ubiquity of thermophilic methanogenic archaea in temperate anoxic soils[J]. Environmental Microbiology, 2006, 8(3):394-404.
    [85] MA K, CONRAD R, LU YH. Responses of methanogen mcrA genes and their transcripts to an alternate dry/wet cycle of paddy field soil[J]. Applied and Environmental Microbiology, 2012, 78(2):445-454.
    [86] LU YH, CONRAD R. In situ stable isotope probing of methanogenic archaea in the rice rhizosphere[J]. Science, 2005, 309(5737):1088-1090.
    [87] YUAN YL, CONRAD R, LU YH. Responses of methanogenic archaeal community to oxygen exposure in rice field soil[J]. Environmental Microbiology Reports, 2009, 1(5):347-354.
    [88] YUAN Q, LU YH. Response of methanogenic archaeal community to nitrate addition in rice field soil[J]. Environmental Microbiology Reports, 2009, 1(5):362-369.
    [89] MA K, LU YH. Regulation of microbial methane production and oxidation by intermittent drainage in rice field soil[J]. FEMS Microbiology Ecology, 2011, 75(3):446-456.
    [90] PENG JJ, LÜ Z, RUI JP, LU YH. Dynamics of the methanogenic archaeal community during plant residue decomposition in an anoxic rice field soil[J]. Applied and Environmental Microbiology, 2008, 74(9):2894-2901.
    [91] MA KE, QIU QF, LU YH. Microbial mechanism for rice variety control on methane emission from rice field soil[J]. Global Change Biology, 2010, 16(11):3085-3095.
    [92] WANG N, CHANG ZZ, XUE XM, YU JG, SHI XX, MA LQ, LI HB. Biochar decreases nitrogen oxide and enhances methane emissions via altering microbial community composition of anaerobic paddy soil[J]. Science of the Total Environment, 2017, 581/582:689-696.
    [93] YUAN HY, DING LJ, ZAMA EF, LIU PP, HOZZEIN WN, ZHU YG. Biochar modulates methanogenesis through electron syntrophy of microorganisms with ethanol as a substrate[J]. Environmental Science & Technology, 2018, 52(21):12198-12207.
    [94] YUSUF RO, NOOR ZZ, ABBA AH, HASSAN MAA, DIN MFM. Methane emission by sectors:a comprehensive review of emission sources and mitigation methods[J]. Renewable and Sustainable Energy Reviews, 2012, 16(7):5059-5070.
    [95] HUANG XD, TAN HY, LONG RJ, LIANG JB, WRIGHT AD G. Comparison of methanogen diversity of yak (Bos grunniens) and cattle (Bos taurus) from the Qinghai-Tibetan Plateau, China[J]. BMC Microbiology, 2012, 12:237.
    [96] HUANG JQ, LI YJ. Rumen methanogen and protozoal communities of Tibetan sheep and Gansu Alpine Finewool sheep grazing on the Qinghai-Tibetan Plateau, China[J]. BMC Microbiology, 2018, 18(1):212.
    [97] XING BS, HAN YL, WANG XC, WEN JW, CAO SF, ZHANG KD, LI Q, YUAN HL. Persistent action of cow rumen microorganisms in enhancing biodegradation of wheat straw by rumen fermentation[J]. The Science of the Total Environment, 2020, 715:136529.
    [98] HRISTOV AN, OH J, GIALLONGO F, FREDERICK TW, HARPER MT, WEEKS HL, BRANCO AF, MOATE PJ, DEIGHTON MH, KINDERMANN M, DUVAL S. An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(34):10663-10668.
    [99] UNGERFELD EM. Shifts in metabolic hydrogen sinks in the methanogenesis-inhibited ruminal fermentation:a meta-analysis[J]. Frontiers in Microbiology, 2015, 6:37.
    [100] YANG CJ, MAO SY, LONG LM, ZHU WY. Effect of disodium fumarate on microbial abundance, ruminal fermentation and methane emission in goats under different forage:concentrate ratios[J]. Animal:an International Journal of Animal Bioscience, 2012, 6(11):1788-1794.
    [101] DING XZ, LONG R, ZHANG Q, HUANG XD, GUO XS, MI J. Reducing methane emissions and the methanogen population in the rumen of Tibetan sheep by dietary supplementation with coconut oil[J]. Tropical Animal Health and Production, 2012, 44:1541-1545.
    [102] GUO WS, SCHAEFER DM, GUO XX, REN LP, MENG QX. Use of nitrate-nitrogen as a sole dietary nitrogen source to inhibit ruminal methanogenesis and to improve microbial nitrogen synthesis in vitro[J]. Asian-Australasian Journal of Animal Sciences, 2009, 22(4):542-549.
    [103] ZHAO LP, MENG QX, LI Y, WU H, HUO YL, ZHANG XZ, ZHOU ZM. Nitrate decreases ruminal methane production with slight changes to ruminal methanogen composition of nitrate-adapted steers[J]. BMC Microbiology, 2018, 18(1):21.
    [104] MAO HL, WANG JK, ZHOU YY, LIU JX. Effects of addition of tea saponins and soybean oil on methane production, fermentation and microbial population in the rumen of growing lambs[J]. Livestock Science, 2010, 129(1/2/3):56-62.
    [105] van WESEMAEL D, VANDAELE L, AMPE B, CATTRYSSE H, DUVAL S, KINDERMANN M, FIEVEZ V, de CAMPENEERE S, PEIREN N. Reducing enteric methane emissions from dairy cattle:two ways to supplement 3-nitrooxypropanol[J]. Journal of Dairy Science, 2019, 102(2):1780-1787.
    [106] LIU ZH, WANG K, NAN XM, CAI M, YANG L, XIONG BH, ZHAO YG. Synergistic effects of 3-nitrooxypropanol with fumarate in the regulation of propionate formation and methanogenesis in dairy cows in vitro[J]. Applied and Environmental Microbiology, 2022, 88(6):e0190821.
    [107] JI JH, LIU YF, ZHOU L, MBADINGA SM, PAN P, CHEN J, LIU JF, YANG SZ, SAND W, GU JD, MU BZ. Methanogenic degradation of long n-alkanes requires fumarate-dependent activation[J]. Applied and Environmental Microbiology, 2019, 85(16):e00985-e00919.
    [108] CHEN J, LIU YF, ZHOU L, MBADINGA SM, YANG T, ZHOU J, LIU JF, YANG SZ, GU JD, MU BZ. Methanogenic degradation of branched alkanes in enrichment cultures of production water from a high-temperature petroleum reservoir[J]. Applied Microbiology and Biotechnology, 2019, 103(5):2391-2401.
    [109] MBADINGA SM, LI KP, ZHOU L, WANG LY, YANG SZ, LIU JF, GU JD, MU BZ. Analysis of alkane-dependent methanogenic community derived from production water of a high-temperature petroleum reservoir[J]. Applied Microbiology and Biotechnology, 2012, 96(2):531-542.
    [110] LIU JF, LU YW, ZHOU L, LI W, HOU ZW, YANG SZ, WU XL, GU JD, MU BZ. Simultaneous detection of transcribed functional assA gene and the corresponding metabolites of linear alkanes (C4, C5, and C7) in production water of a low-temperature oil reservoir[J]. Science of the Total Environment, 2020, 746:141290.
    [111] PAN P, HONG B, MBADINGA SM, WANG LY, LIU JF, YANG SZ, GU JD, MU BZ. Iron oxides alter methanogenic pathways of acetate in production water of high-temperature petroleum reservoir[J]. Applied Microbiology and Biotechnology, 2017, 101(18):7053-7063.
    [112] CHENG L, RUI JP, LI Q, ZHANG H, LU YH. Enrichment and dynamics of novel syntrophs in a methanogenic hexadecane-degrading culture from a Chinese oilfield[J]. FEMS Microbiology Ecology, 2013, 83(3):757-766.
    [113] LIU YF, CHEN J, LIU ZL, HOU ZW, LIANG B, WANG LY, ZHOU L, SHOU LB, LIN DD, YANG SZ, LIU JF, WU XL, GU JD, MU BZ. Long-term cultivation and meta-omics reveal methylotrophic methanogenesis in hydrocarbon-impacted habitats[J]. Engineering, 2022.
    [114] XU L, ZHUANG GC, MONTGOMERY A, LIANG QY, JOYE SB, WANG FP. Methyl-compounds driven benthic carbon cycling in the sulfate-reducing sediments of South China Sea[J]. Environmental Microbiology, 2021, 23(2):641-651.
    [115] ZHOU ZH, WANG CK, LUO YQ. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality[J]. Nature Communications, 2020, 11:3072.
    [116] STETTER KO, THOMM M, WINTER J, WILDGRUBER G, HUBER H, ZILLIG W, JANÉ-COVIC D, KNIG H, PALM P, WUNDERL S. Methanothermus fervidus, sp. nov., a novel extremely thermophilic methanogen isolated from an Icelandic hot spring[J]. Zentralblatt für Bakteriologie Mikrobiologie und Hygiene:I. Abt. Originale C:Allgemeine, angewandte und ökologische Mikrobiologie, 1981, 2(2):166-178.
    [117] KENDALL MM, LIU YT, SIEPRAWSKA-LUPA M, STETTER KO, WHITMAN WB, BOONE DR. Methanococcus aeolicus sp. nov., a mesophilic, methanogenic archaeon from shallow and deep marine sediments[J]. International Journal of Systematic and Evolutionary Microbiology, 2006, 56(Pt 7):1525-1529.
    [118] RIVARD CJ, HENSON JM, THOMAS MV, SMITH PH. Isolation and characterization of Methanomicrobium paynteri sp. nov., a mesophilic methanogen isolated from marine sediments[J]. Applied and Environmental Microbiology, 1983, 46(2):484-490.
    [119] BROCHIER C, FORTERRE P, GRIBALDO S. Archaeal phylogeny based on proteins of the transcription and translation machineries:tackling the Methanopyrus kandleri paradox[J]. Genome Biology, 2004, 5(3):R17.
    [120] WANG YZ, WEGENER G, WILLIAMS TA, XIE RZ, HOU JL, WANG FP, XIAO X. A methylotrophic origin of methanogenesis and early divergence of anaerobic multicarbon alkane metabolism[J]. Science Advances, 2021, 7(7):eabd7180.
    [121] MEI R, KANEKO M, IMACHI H, NOBU MK. The origin and evolution of methanogenesis and archaea are intertwined[J]. Proceedings of the National Academy of Sciences of the United States of America Nexus, 2023, 2(2):pgad023.
    [122] LYU Z, LU YH. Metabolic shift at the class level sheds light on adaptation of methanogens to oxidative environments[J]. The ISME Journal, 2018, 12(2):411-423.
    [123] SCHINK B. Energetics of syntrophic cooperation in methanogenic degradation[J]. Microbiology and Molecular Biology Reviews:MMBR, 1997, 61(2):262-280.
    [124] THIELE JH, CHARTRAIN M, ZEIKUS JG. Control of interspecies electron flow during anaerobic digestion:role of floc formation in syntrophic methanogenesis[J]. Applied and Environmental Microbiology, 1988, 54(1):10-19.
    [125] BOONE DR, JOHNSON RL, LIU Y. Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and its implications in the measurement of Km for H2 or formate uptake[J]. Applied and Environmental Microbiology, 1989, 55(7):1735-1741.
    [126] DONG XZ, CHENG G, STAMS AM. Butyrate oxidation by Syntrophospora bryantii in co-culture with different methanogens and in pure culture with pentenoate as electron acceptor[J]. Applied Microbiology and Biotechnology, 1994, 42(4):647-652.
    [127] DONG XZ, PLUGGE CM, STAMS AJ. Anaerobic degradation of propionate by a mesophilic acetogenic bacterium in coculture and triculture with different methanogens[J]. Applied and Environmental Microbiology, 1994, 60(8):2834-2838.
    [128] LIU PF, LU YH. Concerted metabolic shifts give new insights into the syntrophic mechanism between propionate-fermenting Pelotomaculum thermopropionicum and hydrogenotrophic Methanocella conradii[J]. Frontiers in Microbiology, 2018, 9:1551.
    [129] CHEN YT, ZENG Y, WANG HZ, ZHENG D, KAMAGATA Y, NARIHIRO T, NOBU MK, TANG YQ. Different interspecies electron transfer patterns during mesophilic and thermophilic syntrophic propionate degradation in chemostats[J]. Microbial Ecology, 2020, 80(1):120-132.
    [130] LIU FH, ROTARU AE, SHRESTHA PM, MALVANKAR NS, NEVIN KP, LOVLEY DR. Promoting direct interspecies electron transfer with activated carbon[J]. Energy & Environmental Science, 2012, 5:8982.
    [131] LI HJ, CHANG JL, LIU PF, FU L, DING DW, LU YH. Direct interspecies electron transfer accelerates syntrophic oxidation of butyrate in paddy soil enrichments[J]. Environmental Microbiology, 2015, 17(5):1533-1547.
    [132] van STEENDAM C, SMETS I, SKERLOS S, RASKIN L. Improving anaerobic digestion via direct interspecies electron transfer requires development of suitable characterization methods[J]. Current Opinion in Biotechnology, 2019, 57:183-190.
    [133] YEE MO, ROTARU AE. Extracellular electron uptake in Methanosarcinales is independent of multiheme c-type cytochromes[J]. Scientific Reports, 2020, 10:372.
    [134] ROTARU AE, SHRESTHA PM, LIU FH, MARKOVAITE B, CHEN SS, NEVIN KP, LOVLEY DR. Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri[J]. Applied and Environmental Microbiology, 2014, 80(15):4599-4605.
    [135] ZHENG SL, ZHANG HX, LI Y, ZHANG H, WANG OM, ZHANG J, LIU FH. Co-occurrence of Methanosarcina mazei and Geobacteraceae in an iron (III)-reducing enrichment culture[J]. Frontiers in Microbiology, 2015, 6:941.
    [136] ZHENG SL, LIU FH, WANG BC, ZHANG YC, LOVLEY DR. Methanobacterium capable of direct interspecies electron transfer[J]. Environmental Science & Technology, 2020, 54(23):15347-15354.
    [137] WANG YF, ZHENG AQ, SUN FL, LI M, XU KJ, ZHANG C, LIU SD, XI YJ. Using transcriptome analysis to identify genes involved in switchgrass flower reversion[J]. Frontiers in Plant Science, 2018, 9:1805.
    [138] LOVLEY DR. Syntrophy goes electric:direct interspecies electron transfer[J]. Annual Review of Microbiology, 2017, 71:643-664.
    [139] HOLMES DE, SHRESTHA PM, WALKER DJF, DANG Y, NEVIN KP, WOODARD TL, LOVLEY DR. Metatranscriptomic evidence for direct interspecies electron transfer between Geobacter and Methanothrix species in methanogenic rice paddy soils[J]. Applied and Environmental Microbiology, 2017, 83(9):e00223-e00217.
    [140] LIU X, ZHAN J, JING XY, ZHOU SG, LOVLEY DR. A pilin chaperone required for the expression of electrically conductive Geobacter sulfurreducens pili[J]. Environmental Microbiology, 2019, 21(7):2511-2522.
    [141] LIU X, ZHUO SY, RENSING C, ZHOU SG. Syntrophic growth with direct interspecies electron transfer between pili-free Geobacter species[J]. The ISME Journal, 2018, 12(9):2142-2151.
    [142] LIU X, ZHAN J, LIU L, GAN FT, YE J, NEALSON KH, RENSING C, ZHOU SG. In situ spectroelectrochemical characterization reveals cytochrome-mediated electric syntrophy in Geobacter coculture[J]. Environmental Science & Technology, 2021, 55(14):10142-10151.
    [143] YE Y, LIU X, NEALSON KH, RENSING C, QIN SP, ZHOU SG. Dissecting the structural and conductive functions of nanowires in Geobacter sulfurreducens electroactive biofilms[J]. mBio, 2021, 13(1):e0382221.
    [144] DENG L, LIU Y, ZHENG D, WANG L, PU XD, LI S, ZHIYONG W, LEI YH, CHEN ZA, LONG Y. Application and development of biogas technology for the treatment of waste in China[J]. Renewable & Sustainable Energy Reviews, 2017, 70:845-851.
    [145] QIAO W, PENG C, WANG W, ZHANG Z. Biogas production from supernatant of hydrothermally treated municipal sludge by upflow anaerobic sludge blanket reactor[J]. Bioresource Technology, 2011, 102(21):9904-9911.
    [146] WANG T, HUANG Z, RUAN W, ZHAO M, SHAO Y, MIAO H. Insights into sludge granulation during anaerobic treatment of high-strength leachate via a full-scale IC reactor with external circulation system[J]. Journal of Environmental Sciences, 2018, 64:227-234.
    [147] WANG YZ, ZHANG YL, LI JX, LIN JG, ZHANG N, CAO WZ. Biogas energy generated from livestock manure in China:current situation and future trends[J]. Journal of Environmental Management, 2021, 297:113324.
    [148] YANG H, DENG L, WU J, WANG W, ZHENG D, WANG Z, LIU Y. Intermittent air mixing system for anaerobic digestion of animal wastewater:operating conditions and full-scale validation[J]. Bioresource Technology, 2021, 335:125304.
    [149] DENG L, CAI C, CHEN Z. The treatment of pig slurry by a full-scale anaerobic-adding raw wastewater-intermittent aeration process[J]. Biosystems Engineering, 2007, 98(3):327-334.
    [150] YANG Z, WANG W, LIU C, ZHANG R, LIU G. Mitigation of ammonia inhibition through bioaugmentation with different microorganisms during anaerobic digestion:selection of strains and reactor performance evaluation[J]. Water Research, 2019, 155:214-224.
    [151] LI Y, YANG G, LI L, SUN Y. Bioaugmentation for overloaded anaerobic digestion recovery with acid-tolerant methanogenic enrichment[J]. Waste Management, 2018, 79:744-751.
    [152] LI Y, LI L, SUN Y, YUAN Z. Bioaugmentation strategy for enhancing anaerobic digestion of high C/N ratio feedstock with methanogenic enrichment culture[J]. Bioresource Technology, 2018, 261:188-195.
    [153] HE L, LI L, LI Y, WANG C, SUN Y. Bioaugmentation with methanogenic culture to improve methane production from chicken manure in batch anaerobic digestion[J]. Chemosphere, 2022, 303:135127.
    [154] LI Y, WANG C, XU X, SUN Y, XING T. Bioaugmentation with a propionate-degrading methanogenic culture to improve methane production from chicken manure[J]. Bioresource Technology, 2022, 346:126607.
    [155] LI MT, RAO L, WANG L, GOU M, SUN ZY, XIA ZY, SONG WF, TANG YQ. Bioaugmentation with syntrophic volatile fatty acids-oxidizing consortia to alleviate the ammonia inhibition in continuously anaerobic digestion of municipal sludge[J]. Chemosphere, 2022, 288:132389.
    [156] 张雪, 张辉, 承磊. 获取有机物厌氧降解产甲烷过程中关键功能类群:互营细菌培养物[J]. 微生物学报, 2019, 59(2):211-223. ZHANG X, ZHANG H, CHENG L. Key players involved in methanogenic degradation of organic compounds:progress on the cultivation of syntrophic bacteria[J]. Acta Microbiologica Sinica, 2019, 59(2):211-223 (in Chinese).
    [157] 刘鹏飞, 陆雅海. 水稻土中脂肪酸互营氧化的研究进展[J]. 微生物学通报, 2013, 40(1):109-122. LIU PF, LU YH. A review of syntrophic fatty acids oxidation in anoxic paddy soil[J]. Microbiology China, 2013, 40(1):109-122 (in Chinese).
    [158] SOUSA DZ, SMIDT H, ALVES MM, STAMS AJM. Ecophysiology of syntrophic communities that degrade saturated and unsaturated long-chain fatty acids[J]. FEMS Microbiology Ecology, 2009, 68(3):257-272.
    [159] 东秀珠. 厌氧降解中互营产甲烷代谢机制的探讨[J]. 微生物学通报, 1993, 20(1):36-42. DONG XZ. Discussion on the metabolic mechanism of mutual methane production in anaerobic degradation[J]. Microbiology China, 1993, 20(1):36-42 (in Chinese).
    [160] MCINERNEY MJ, STRUCHTEMEYER CG, SIEBER J, MOUTTAKI H, STAMS AJM, SCHINK B, ROHLIN L, GUNSALUS RP. Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism[J]. Annals of the New York Academy of Sciences, 2008, 1125:58-72.
    [161] DOLFING J, LARTER SR, HEAD IM. Thermodynamic constraints on methanogenic crude oil biodegradation[J]. The ISME Journal, 2008, 2(4):442-452.
    [162] 王立影, Mbadinga Serge Maurice, 李辉, 刘金峰, 杨世忠, 牟伯中. 石油烃的厌氧生物降解对油藏残余油气化开采的启示[J]. 微生物学通报, 2010, 37(1):96-102. WANG LY, MBADINGA SM, LI H, LIU JF, YANG SZ, MOU BZ. Anaerobic biodegradation of petroleum hydrocarbons and enlightenment of the prospects for gasification of residual oil[J]. Microbiology China, 2010, 37(1):96-102 (in Chinese).
    [163] GIEG LM, DUNCAN KE, SUFLITA JM. Bioenergy production via microbial conversion of residual oil to natural gas[J]. Applied and Environmental Microbiology, 2008, 74(10):3022-3029.
    [164] CHENG L, DING C, LI Q, HE Q, DAI LR, ZHANG H. DNA-SIP reveals that Syntrophaceae play an important role in methanogenic hexadecane degradation[J]. PLoS One, 2013, 8(7):e66784.
    [165] YE J, YU J, ZHANG Y, CHEN M, LIU X, ZHOU S, HE Z. Light-driven carbon dioxide reduction to methane by Methanosarcina barkeri-CdS biohybrid[J]. Applied Catalysis B:Environmental, 2019, 257:117916.
    [166] WANG C, YU J, REN GP, HU AD, LIU X, CHEN YP, YE J, ZHOU SG, HE Z. Self-replicating biophotoelectrochemistry system for sustainable CO methanation[J]. Environmental Science & Technology, 2022, 56(7):4587-4596.
    [167] YE J, WANG C, GAO C, FU T, YANG CH, REN GP, LÜ J, ZHOU SG, XIONG YJ. Solar-driven methanogenesis with ultrahigh selectivity by turning down H2 production at biotic-abiotic interface[J]. Nature Communications, 2022, 13:6612.
    [168] HUANG LY, LIU X, ZHANG ZS, YE J, RENSING C, ZHOU SG, NEALSON KH. Light-driven carbon dioxide reduction to methane by Methanosarcina barkeri in an electric syntrophic coculture[J]. The ISME Journal, 2022, 16(2):370-377.
    [169] THEVASUNDARAM K, GALLAGHER JJ, CHERNG F, CHANG MCY. Engineering nonphotosynthetic carbon fixation for production of bioplastics by methanogenic archaea[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(23):e2118638119.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

易悦,周卓,黄艳,承磊. 我国产甲烷古菌研究进展与展望[J]. 微生物学报, 2023, 63(5): 1796-1814

复制
分享
文章指标
  • 点击次数:380
  • 下载次数: 2482
  • HTML阅读次数: 1474
  • 引用次数: 0
历史
  • 收稿日期:2023-02-23
  • 最后修改日期:2023-04-20
  • 在线发布日期: 2023-05-22
  • 出版日期: 2023-05-04
文章二维码