覆土栽培食用菌的微生物病害防控
作者:
基金项目:

中国农业科学院科技创新工程(CAAS-ASTIP-2016-BIOMA);四川省科技计划(重点研发项目)(2022YFN0062);中央级公益性科研院所基本科研业务费(1610012022009-03102)


Prevention and control of microbial diseases in soil-covered cultivation of edible fungi
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [62]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    微生物病害问题会造成覆土栽培食用菌的产量和质量严重下降。防控微生物病害一直是食用菌研究和产业发展关注的热点,但常规的防控措施均存在局限性,尚难以在生产实践中有效地防控病害。本文列举了近年来常规的生物和非生物方法在覆土栽培食用菌微生物病害防控中的应用,对其特点进行了总结,并综述了近年来覆土栽培食用菌土壤微生物群落多样性研究的进展。基于此,提出了应用合成土壤微生物组来防控食用菌微生物病害的新策略,对构建和应用合成土壤微生物组面临的挑战和前景进行展望。这将有助于有效地防控覆土栽培食用菌的微生物病害和维系土壤健康。

    Abstract:

    Microbial diseases can greatly reduce the yield and quality of edible fungi cultivated with the soil-covered mode. Prevention and control of these microbial diseases is kept focused in both research and industrial development of edible fungi. Nevertheless, the drawbacks of regular techniques limit their practical applications to effectively prevent and control microbial diseases. In this review, we summarize recent applications, as well as the pros and cons, of regular biological and non-biological techniques for preventing and controlling microbial diseases in the soil-covered cultivation of edible fungi. We also review recent research progresses on soil microbial community diversity in the soil-covered cultivation of edible fungi. Based on these progresses, we propose a new strategy that applies a synthetic soil microbial community to prevent and control microbial diseases in the soil-covered cultivation of edible fungi. Moreover, the challenges and prospects to constructing and applying a synthetic soil microbial community are present. This review contributes to the efficient prevention and control of microbial diseases in the cultivation of edible fungi and the maintenance of soil health.

    参考文献
    [1] 李博. 食用菌生产中微生物灾害的分类及防治[J]. 黑龙江科学, 2020, 11(4):50-51. LI B. Classification and control of microbial disasters in the production of edible fungi[J]. Heilongjiang Science, 2020, 11(4):50-51 (in Chinese).
    [2] 隋昆澎, 田龙, 宋冰, 李玉. 食用菌细菌性病害研究进展[J]. 食用菌学报, 2020, 27(1):97-104. SUI KP, TIAN L, SONG B, LI Y. Advances in bacterial diseases of edible fungi[J]. Acta Edulis Fungi, 2020, 27(1):97-104 (in Chinese).
    [3] 刘正慧, 李丹, SOSSAH Frederick Leo, 沈宏艳, OKORLEY Benjamin Azu, 付永平. 食用菌主要病原真菌和细菌[J]. 菌物研究, 2018, 16(3):158-163. LIU ZH, LI D, LEO SF, SHEN HY, AZU OB, FU YP. Major pathogenic fungi and bacteria in edible fungi[J]. Journal of Fungal Research, 2018, 16(3):158-163 (in Chinese).
    [4] 曹满堂, 李宾, 李宏, 方昌春, 何培新. 食用菌蛛网病研究进展[J]. 食用菌学报, 2020, 27(3):127-136. CAO MT, LI B, LI H, FANG CC, HE PX. Advances in mushroom cobweb disease[J]. Acta Edulis Fungi, 2020, 27(3):127-136 (in Chinese).
    [5] 张志康, 朱晓华, 赵鹏, 程显好. 食用菌土传真菌病原鉴定与检测研究进展[J]. 中国瓜菜, 2022, 35(10):10-15. ZHANG ZK, ZHU XH, ZHAO P, CHENG XH. Advances in pathogen identification and detection of soil-borne fungal diseases in edible mushrooms[J]. China Cucurbits and Vegetables, 2022, 35(10):10-15 (in Chinese).
    [6] 李雪飞, 宋冰, 李玉. 食用菌病毒的研究进展[J]. 微生物学报, 2019, 59(10):1841-1854. LI XF, SONG B, LI Y. Research progress in mushroom virus[J]. Acta Microbiologica Sinica, 2019, 59(10):1841-1854 (in Chinese).
    [7] RAO JR, NELSON DW, MCCLEAN S. The Enigma of double-stranded RNA (dsRNA) associated with mushroom virus X (MVX)[J]. Current Issues in Molecular Biology, 2007, 9(2):103-121.
    [8] ROMAINE CP, ULHRICH P, SCHLAGNHAUFER B. Transmission of La France isometric virus during basidiosporogenesis in Agaricus bisporus[J]. Mycologia, 1993, 85(2):175.
    [9] SAHIN E, KESKIN E, AKATA L. The unique genome organization of two novel fusariviruses hosted by the true morel mushroom Morchella esculenta[J]. Virus Research, 2021, 302:198486.
    [10] LI XF, SUI KP, XIE JT, HAI D, YIN WQ, LEO SOSSAH F, JIANG DH, SONG B, LI Y. Molecular characterization of a novel fusarivirus infecting the edible fungus Auricularia heimuer[J]. Archives of Virology, 2020, 165(11):2689-2693.
    [11] LI XF, XIE JT, HAI D, SUI KP, YIN WQ, LEO SOSSAH F, JIANG DH, SONG B, LI Y. Molecular characteristics of a novel ssRNA virus isolated from Auricularia heimuer in China[J]. Archives of Virology, 2020, 165(6):1495-1499.
    [12] TANG SJ, FAN TT, JIN L, LEI P, SHAO CX, WU SL, YANG Y, HE YL, REN R, XU J. Soil microbial diversity and functional capacity associated with the production of edible mushroom Stropharia rugosoannulata in croplands[J]. PeerJ, 2022, 10:e14130.
    [13] GULLINO ML, GARIBALDI A, GAMLIEL A, KATAN J. Soil disinfestation:from soil treatment to soil and plant health[J]. Plant Disease, 2022, 106(6):1541-1554.
    [14] GEA FJ, NAVARRO MJ, SANTOS M, DIÁNEZ F, CARRASCO J. Control of fungal diseases in mushroom crops while dealing with fungicide resistance:a review[J]. Microorganisms, 2021, 9(3):585.
    [15] 周莉. 平菇单孢杂交及抗病新菌株选育[D]. 南宁:广西大学硕士学位论文, 2014. ZHOU L. Monospore cross breeding and screening of new strains resistant to disease of oyster mushroom[D]. Nanning:Master's Thesis of Guangxi University, 2014 (in Chinese).
    [16] 于浩, 葛志豪, 徐丽丽, 郭立忠. 双单杂交技术选育长根菇高品质抗病新菌株[J]. 南方农业学报, 2019, 50(12):2621-2628. YU H, GE ZH, XU LL, GUO LZ. Breeding of high oudenone production and Trichoderma resistant Oudemansiella raphanipes strain by dikaryon-monokaryon mating[J]. Journal of Southern Agriculture, 2019, 50(12):2621-2628 (in Chinese).
    [17] GEA FJ, CARRASCO J, DIÁNEZ F, SANTOS M, NAVARRO MJ. Control of dry bubble disease (Lecanicillium fungicola) in button mushroom (Agaricus bisporus) by spent mushroom substrate tea[J]. European Journal of Plant Pathology, 2014, 138(4):711-720.
    [18] ALLAHYARI M, GHOLAMNEZHAD J, MALEKI M. Evaluation of the plant essential oils to control of dry bubble disease (Lecanicillium fungicola (Preuss) Zare) in the white button mushroom[J]. Polish Journal of Natural Sciences, 2021, 36(1):5-23.
    [19] BERENDSEN RL, KALKHOVE SIC, LUGONES LG, BAARS JJP, WÖSTEN HAB, BAKKER PAHM. Effects of the mushroom-volatile 1-octen-3-ol on dry bubble disease[J]. Applied Microbiology and Biotechnology, 2013, 97(12):5535-5543.
    [20] YU Y, LIU TH, LIU LX, CHEN Y, TANG J, PENG WH, TAN H. Application of the mushroom volatile 1-octen-3-ol to suppress a morel disease caused by Paecilomyces penicillatus[J]. Applied Microbiology and Biotechnology, 2022, 106(12):4787-4799.
    [21] MUHAMMAD I, LEO SOSSAH F, YANG Y, LI D, LI SJ, FU YP, LI Y. Identification of resistance to cobweb disease caused by Cladobotryum mycophilumin wild and cultivated strains of Agaricus bisporus and screening for bioactive botanicals[J]. RSC Advances, 2019, 9(26):14758-14765.
    [22] 徐岩岩, 柴薇, 孙思若, 刘晴, 董彩虹. 大蒜浸出液对平菇细菌性褐斑病病原菌托拉斯假单胞杆菌的抑菌作用[J]. 微生物学通报, 2022, 49(5):1619-1628. XU YY, CHAI W, SUN SR, LIU Q, DONG CH. Antibacterial effect of Allium sativum leachate on Pseudomonas tolaasii, the pathogen of brown blotch disease infecting Pleurotus ostreatus[J]. Microbiology China, 2022, 49(5):1619-1628 (in Chinese).
    [23] 边银丙, 肖扬, 郭孟配. 食用菌病害防控研究进展[J]. 食用菌学报, 2021, 28(5):121-131. BIAN YB, XIAO Y, GUO MP. Research progress on disease control of edible fungi[J]. Acta Edulis Fungi, 2021, 28(5):121-131 (in Chinese).
    [24] 袁宗胜. 毛竹内生拮抗细菌对食用菌病害的生防机理研究[J]. 安徽农业科学, 2022, 50(8):126-128, 140. YUAN ZS. The biological control mechanism of endophytic antagonistic bacteria in Phyllostachys edulis on edible fungi diseases[J]. Journal of Anhui Agricultural Sciences, 2022, 50(8):126-128, 140 (in Chinese).
    [25] MWANGI RW, KARIUKI S, WAGARA I. Biocontrol of green mould disease of oyster mushroom (Pleurotus ostreatus) using Bacillus amyloliquefaciens[J]. Journal of Biology, Agriculture and Healthcare, 2017, 7:25-30.
    [26] ADRIENN N, MANCZINGER L, TOMBÁCZ D, HATVANI L, J G, ANTAL Z, SAJBEN-NAGY E, VÁGVÖLGYI C, KREDICS L. Biological control of oyster mushroom green mould disease by antagonistic Bacillus species[J]. IOBC/WPRS BULLETIN, 2011, 78:289-293.
    [27] ROBERTI R, DI FRANCESCO A, INNOCENTI G, MARI M. Potential for biocontrol of Pleurotus ostreatus green mould disease by Aureobasidium pullulans De Bary (Arnaud)[J]. Biological Control, 2019, 135:9-15.
    [28] LEE CJ, YOO YM, HAN JY, JHUNE CS, CHEONG JC, MOON JW, GONG WS, SUH JS, HAN HS, CHA JS. Pseudomonas azotoformans HC5 effective in antagonistic of mushrooms brown blotch disease caused by Pseudomonas tolaasii[J]. The Korean Journal of Mycology, 2014, 42(3):219-224.
    [29] PINEDA A, KAPLAN I, BEZEMER TM. Steering soil microbiomes to suppress aboveground insect pests[J]. Trends in Plant Science, 2017, 22(9):770-778.
    [30] BAI B, LIU WD, QIU XY, ZHANG J, ZHANG JY, BAI Y. The root microbiome:community assembly and its contributions to plant fitness[J]. Journal of Integrative Plant Biology, 2022, 64(2):230-243.
    [31] TRIVEDI P, LEACH JE, TRINGE SG, SA TM, SINGH BK. Plant-microbiome interactions:from community assembly to plant health[J]. Nature Reviews Microbiology, 2020, 18(11):607-621.
    [32] BERENDSEN RL, VISMANS G, YU K, SONG Y, de JONGE R, BURGMAN WP, BURMØLLE M, HERSCHEND J, BAKKER PAHM, PIETERSE CMJ. Disease-induced assemblage of a plant-beneficial bacterial consortium[J]. The ISME Journal, 2018, 12(6):1496-1507.
    [33] NIU B, PAULSON JN, ZHENG XQ, KOLTER R. Simplified and representative bacterial community of maize roots[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(12):E2450-E2459.
    [34] LEE SM, KONG HG, SONG GC, RYU CM. Disruption of Firmicutes and Actinobacteria abundance in tomato rhizosphere causes the incidence of bacterial wilt disease[J]. The ISME Journal, 2021, 15(1):330-347.
    [35] JIANG GF, ZHANG YL, GAN GY, LI WL, WAN W, JIANG YQ, YANG TJ, ZHANG Y, XU YC, WANG YK, SHEN QR, WEI Z, DINI-ANDREOTE F. Exploring rhizo-microbiome transplants as a tool for protective plant-microbiome manipulation[J]. ISME Communications, 2022, 2:10.
    [36] LI ZF, BAI XL, JIAO S, LI YM, LI PR, YANG Y, ZHANG H, WEI GH. A simplified synthetic community rescues Astragalus mongholicus from root rot disease by activating plant-induced systemic resistance[J]. Microbiome, 2021, 9(1):217.
    [37] CAO LP, ZHANG Q, MIAO RY, LIN JB, FENG RC, NI YQ, LI WS, YANG DL, ZHAO X. Application of omics technology in the research on edible fungi[J]. Current Research in Food Science, 2023, 6:100430.
    [38] YANG C, JIANG XL, MA L, XIAO DL, LIU XY, YING ZH, LI YR, LIN YQ. Transcriptomic and metabolomic profiles provide insights into the red-stipe symptom of morel fruiting bodies[J]. Journal of Fungi, 2023, 9(3):373.
    [39] TAN H, KOHLER A, MIAO RY, LIU TH, ZHANG Q, ZHANG B, JIANG L, WANG Y, XIE LY, TANG J, LI XL, LIU LX, GRIGORIEV IV, DAUM C, LABUTTI K, LIPZEN A, KUO AL, MORIN E, DRULA E, HENRISSAT B, et al. Multi-omic analyses of exogenous nutrient bag decomposition by the black morel Morchella importuna reveal sustained carbon acquisition and transferring[J]. Environmental Microbiology, 2019, 21(10):3909-3926.
    [40] FAN TT, REN R, TANG SJ, ZHOU YY, CAI M, ZHAO WW, HE YL, XU J. Transcriptomics combined with metabolomics unveiled the key genes and metabolites of mycelium growth in Morchella importuna[J]. Frontiers in Microbiology, 2023, 14:1079353.
    [41] MCGEE CF. Microbial ecology of the Agaricus bisporus mushroom cropping process[J]. Applied Microbiology and Biotechnology, 2018, 102(3):1075-1083.
    [42] ZHANG B, YAN LJ, LI Q, ZOU J, TAN H, TAN W, PENG WH, LI XL, ZHANG XP. Dynamic succession of substrate-associated bacterial composition and function during Ganoderma lucidumgrowth[J]. PeerJ, 2018, 6:e4975.
    [43] YAO CX, TAO N, LIU JX, LIANG MT, WANG H, TIAN GT. Differences in soil microbiota of continuous cultivation of Ganoderma leucocontextum[J]. Agronomy, 2023, 13(3):888.
    [44] YANG RH, BAO DP, GUO T, LI Y, JI GY, JI KP, TAN Q. Bacterial profiling and dynamic succession analysis of Phlebopus portentosus casing soil using MiSeq sequencing[J]. Frontiers in Microbiology, 2019, 10:1927.
    [45] GONG S, CHEN C, ZHU JX, QI GY, JIANG SX. Effects of wine-cap Stropharia cultivation on soil nutrients and bacterial communities in forestlands of northern China[J]. PeerJ, 2018, 6:e5741.
    [46] TAN H, LIU TH, YU Y, TANG J, JIANG L, MARTIN FM, PENG WH. Morel production related to soil microbial diversity and evenness[J]. Microbiology Spectrum, 2021, 9(2):e0022921.
    [47] ZHANG C, SHI XF, ZHANG JX, ZHANG YS, WANG W. Dynamics of soil microbiome throughout the cultivation life cycle of morel (Morchella sextelata)[J]. Frontiers in Microbiology, 2023, 14:979835.
    [48] BENUCCI GMN, LONGLEY R, ZHANG P, ZHAO Q, BONITO G, YU FQ. Microbial communities associated with the black morel Morchella sextelata cultivated in greenhouses[J]. PeerJ, 2019, 7:e7744.
    [49] YU FM, JAYAWARDENA RS, THONGKLANG N, LV ML, ZHU XT, ZHAO Q. Morel production associated with soil nitrogen-fixing and nitrifying microorganisms[J]. Journal of Fungi, 2022, 8(3):299.
    [50] CARRASCO J, PRESTON GM. Growing edible mushrooms:a conversation between bacteria and fungi[J]. Environmental Microbiology, 2020, 22(3):858-872.
    [51] 梁俊峰, 禹飞, 史静龙. 棘托竹荪连作对根际土壤细菌的影响[J]. 湖南生态科学学报, 2019, 6(2):1-10. LIANG JF, YU F, SHI JL. Effects of continuous cropping of Phallus echinovolvatus on rhizosphere soil bacteria[J]. Journal of Hunan Ecological Science, 2019, 6(2):1-10 (in Chinese).
    [52] 黄敏. 大田双孢蘑菇连作障碍的土壤微生物学特性研究[D]. 成都:四川农业大学硕士学位论文,2006. HUANG M. Study on soil microorganism of Agaricus bisporus replant field[D]. Chengdou:Master՚s Thesis of Sichuan Agricultural University, 2006 (in Chinese).
    [53] KE LQ, LI PD, XU JP, WANG QS, WANG LL, WEN HP. Microbial communities and soil chemical features associated with commercial production of the medicinal mushroom Ganoderma lingzhi in soil[J]. Scientific Reports, 2019, 9:15839.
    [54] 陈诚, 李强, 王剑, 伏荣桃, 金鑫, 熊川, 卢代华. 羊肚菌烂柄病发生对土壤真菌群落结构的影响[J]. 微生物学杂志, 2018, 38(5):39-45. CHEN C, LI Q, WANG J, FU RT, JIN X, XIONG C, LU DH. Effects of morel (Morchella sp.) stipe rot disease occurrence on soil fungal community structure[J]. Journal of Microbiology, 2018, 38(5):39-45 (in Chinese).
    [55] 谭一罗, 苏文英, 任立凯, 樊继伟, 周振玲, 杨和川. 长毛拟青霉发生对羊肚菌根际土壤真菌群落结构的影响[J]. 西北农业学报, 2021, 30(8):1227-1232. TAN YL, SU WY, REN LK, FAN JW, ZHOU ZL, YANG HC. Effect of Paecilomyces penicillatus occurrence on fungal community structure of Morchella rhizosphere soil[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2021, 30(8):1227-1232 (in Chinese).
    [56] 李建英, 华蓉, 孙达锋, 温宪勤, 李雪松, 马明, 高章会, 和勇, 刘绍雄. 羊肚菌白霉病病原菌及病害样地土壤真菌群落结构研究[J]. 中国食用菌, 2022, 41(10):50-54. LI JY, HUA R, SUN DF, WEN XQ, LI XS, MA M, GAO ZH, HE Y, LIU SX. Research on white mold disease on Morchella spp. and fungal community structure of soil samples[J]. Edible Fungi of China, 2022, 41(10):50-54 (in Chinese).
    [57] BRAAT N, KOSTER MC, WÖSTEN HAB. Beneficial interactions between bacteria and edible mushrooms[J]. Fungal Biology Reviews, 2022, 39:60-72.
    [58] 陈诚, 李强, 黄文丽, 王剑, 伏荣桃, 罗曦, 卢代华. 羊肚菌白霉病发生对土壤真菌群落结构的影响[J]. 微生物学通报, 2017, 44(11):2652-2659. CHEN C, LI Q, HUANG WL, WANG J, FU RT, LUO X, LU DH. Effects of Morchella white mold disease on soil fungal community structure[J]. Microbiology China, 2017, 44(11):2652-2659 (in Chinese).
    [59] ORLOFSKY E, ZABARI L, BONITO G, MASAPHY S. Changes in soil bacteria functional ecology associated with Morchella rufobrunnea fruiting in a natural habitat[J]. Environmental Microbiology, 2021, 23(11):6651-6662.
    [60] 袁源, 李琳, 黄海辰, 刘国辉, 谢福泉, 傅俊生, 吴小平. 基于16S rDNA扩增子测序分析灵芝连作覆土细菌群落的变化[J]. 中国农学通报, 2021, 37(24):116-123. YUAN Y, LI L, HUANG HC, LIU GH, XIE FQ, FU JS, WU XP. Analysis of bacterial community in Ganoderma lingzhi continuous cropping soil based on 16S rDNA amplicon sequencing[J]. Chinese Agricultural Science Bulletin, 2021, 37(24):116-123 (in Chinese).
    [61] LEWIS WH, TAHON G, GEESINK P, SOUSA DZ, ETTEMA TJG. Innovations to culturing the uncultured microbial majority[J]. Nature Reviews Microbiology, 2021, 19(4):225-240.
    [62] 陈沫先, 韦中, 田亮, 谭扬, 黄建东, 戴磊. 合成微生物群落的构建与应用[J]. 科学通报, 2021, 66(3):273-283. CHEN MX, WEI Z, TIAN L, TAN Y, HUANG JD, DAI L. Design and application of synthetic microbial communities[J]. Chinese Science Bulletin, 2021, 66(3):273-283 (in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李沛昕,苗人云,吴波,阮志勇,何明雄. 覆土栽培食用菌的微生物病害防控[J]. 微生物学报, 2023, 63(5): 1888-1898

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-03-01
  • 最后修改日期:2023-04-28
  • 在线发布日期: 2023-05-22
  • 出版日期: 2023-05-04
文章二维码