抗逆放线菌的多样性、功能特性及其在环境修复中的应用
作者:
基金项目:

国家自然科学基金(41807110);福建省自然科学基金(2021J01196);福建师范大学科技创新团队培育计划(Y0720409B06);福建师范大学“宝琛计划”青年英才;福建师范大学国家级大学生创新创业训练计划(202210394025)


Diversity, functional characteristics, and environmental remediation potential of stress-tolerant actinomycetes
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [78]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    放线菌(actinomycetes)是一类可生存于各种极端环境的特殊菌群,具备较强的抗逆特性。其种类丰富,功能多样,适应性强,已被广泛用于抗生素开发、生物防治和环境修复等领域。放线菌可调节土壤微生物群落结构、介导营养元素转化和植物吸收、催化有机污染物降解及重金属的氧化还原过程,该特性赋予其在土壤改良、地力维持和污染物去除等方面广阔的环境应用前景。本文综述了放线菌的多样性、环境分布以及放线菌对环境改良和污染物去除的特性与机制,结合在环境修复领域的应用现状,总结了放线菌修复技术的优势及发展方向。

    Abstract:

    Actinomycetes are a special group of bacteria that have strong tolerance and can live in extreme environments. With rich species, diverse functions, and strong adaptability, actinomycetes have been widely used in antibiotic production, biological control, and environmental remediation. Actinomycetes can regulate soil microbial community structure, mediate nutrient transformation and plant assimilation, and catalyze organic pollutant degradation and heavy metal redox process.These roles endow actinomycetes with great application potentials in soil improvement, fertility maintenance, and pollutant removal. This paper introduced the diversity and environmental distribution of actinomycetes and summarized the characteristics and mechanisms of actinomycetes in environmental improvement and pollutant removal. Furthermore, we reviewed their application progress in environmental remediation and summarized the advantages and development direction of actinomycetes-based remediation technology.

    参考文献
    [1] LAW JWF, LETCHUMANAN V, TENG-HERN TAN L, SER HL, GOH BH, LEE LH. The rising of "modern Actinobacteria" era[J]. Progress in Microbes & Molecular Biology, 2020, 3(1):1-6.
    [2] FARDA B, DJEBAILI R, VACCARELLI I, del GALLO M, PELLEGRINI M. Actinomycetes from caves:an overview of their diversity, biotechnological properties, and insights for their use in soil environments[J]. Microorganisms, 2022, 10(2):453.
    [3] SCHMIDT A, HAFERBURG G, SCHMIDT A, LISCHKE U, MERTEN D, GHERGEL F, BÜCHEL G, KOTHE E. Heavy metal resistance to the extreme:Streptomyces strains from a former uranium mining area[J]. Geochemistry, 2009, 69:35-44.
    [4] DILIP CV, MULAJE SS, MOHALKAR RY. A review on actinomycetes and their biotechnological application[J]. International Journal of Pharmaceutical Sciences and Research, 2013, 4(5):1730-1742.
    [5] CHOKEKIJCHAI S, KOJIMA E, ANDERSON S, NOMIZU M, TANAKA M, MACHIDA M, DATE T, TOYOTA K, ISHIDA S, WATANABE K. NP-06:a novel anti-human immunodeficiency virus polypeptide produced by a Streptomyces species[J]. Antimicrobial Agents and Chemotherapy, 1995, 39(10):2345-2347.
    [6] BAO YY, DOLFING J, GUO ZY, CHEN RR, WU M, LI ZP, LIN XG, FENG YZ. Important ecophysiological roles of non-dominant Actinobacteria in plant residue decomposition, especially in less fertile soils[J]. Microbiome, 2021, 9(1):84.
    [7] 席娇, 徐腾起, 刘玉涛, 马永清, 薛泉宏, 林雁冰. Streptomyces rochei D74菌剂对向日葵、列当及其根际微生物的影响[J]. 微生物学报, 2023, 63(2):745-759. XI J, XU TQ, LIU YT, MA YQ, XUE QH, LIN YB. Effect of Streptomyces rochei D74 on sunflower, Orobanche cumana, and their rhizosphere microorganisms[J]. Acta Microbiologica Sinica, 2023, 63(2):745-759 (in Chinese).
    [8] STACH JEM, MALDONADO LA, WARD AC, GOODFELLOW M, BULL AT. New primers for the class Actinobacteria:application to marine and terrestrial environments[J]. Environmental Microbiology, 2003, 5(10):828-841.
    [9] OKORO CK, BROWN R, JONES AL, ANDREWS BA, ASENJO JA, GOODFELLOW M, BULL AT. Diversity of culturable actinomycetes in hyper-arid soils of the Atacama desert, Chile[J]. Antonie Van Leeuwenhoek, 2009, 95(2):121-133.
    [10] MAWANG CI, AZMAN AS, FUAD ASM, AHAMAD M. Actinobacteria:an eco-friendly and promising technology for the bioaugmentation of contaminants[J]. Biotechnology Reports, 2021, 32:e00679.
    [11] SAHUR A, ALA A, PATANDJENGI B, SYAM'UN E. Effect of seed inoculation with actinomycetes and Rhizobium isolated from indigenous soybean and rhizosphere on nitrogen fixation, growth, and yield of soybean[J]. International Journal of Agronomy, 2018, 2018:1-7.
    [12] KAUR T, RANI R, MANHAS RK. Biocontrol and plant growth promoting potential of phylogenetically new Streptomyces sp. MR14 of rhizospheric origin[J]. AMB Express, 2019, 9(1):125.
    [13] CLAWSON ML, BENSON DR. Natural diversity of Frankia strains in actinorhizal root nodules from promiscuous hosts in the family Myricaceae[J]. Applied and Environmental Microbiology, 1999, 65(10):4521-4527.
    [14] GROTH I, SCHUMANN P, RAINEY FA, MARTIN K, SCHUETZE B, AUGSTEN K. Demetria terragena gen. nov., sp. nov., a new genus of actinomycetes isolated from compost soil[J]. International Journal of Systematic Bacteriology, 1997, 47(4):1129-1133.
    [15] 李旖曦, 陈涵冰, 王耀强, 张虹, 张勇, 韩永和.耐砷促生菌对超富集植物蜈蚣草砷吸收及根际微生物群落的调控作用[J/OL].微生物学报, 2023. https://doi.org/10.13343/j.cnki.wsxb.20220553. LI YX, CHEN HB, WANG YQ, ZHANG H, ZHANG Y, HAN YH. Effects of arsenic-tolerant growth-promoting bacteria on arsenic uptake and rhizosphere microbial community of hyperaccumulator Pteris vittata[J/OL]. Acta Microbiologica Sinica, 2023. https://doi.org/10.13343/j.cnki.wsxb.20220553 (in Chinese).
    [16] 保欣晨, 覃一书, 侯磊, 汪洁, 韩永和, 向萍. 典型高原湿地底泥微生物对砷污染的响应[J]. 环境科学学报, 2022, 42(4):454-463. BAO XC, QIN YS, HOU L, WANG J, HAN YH, XIANG P. Responses of microbes to arsenic pollution in sediment of typical plateau wetland[J]. Acta Scientiae Circumstantiae, 2022, 42(4):454-463 (in Chinese).
    [17] LIU Y, ZHANG B, HAN Y-H, YAO Y, GUO P. Involvement of exogenous arsenic-reducing bacteria in root surface biofilm formation promoted phytoextraction of arsenic[J]. Science of the Total Environment, 2023, 858:160158.
    [18] GUO D, REN C, ALI A, DU J, ZHANG Z, LI R, ZHANG Z. Streptomyces pactum and sulfur mediated the antioxidant enzymes in plant and phytoextraction of potentially toxic elements from a smelter-contaminated soils[J]. Environmental Pollution, 2019, 251:37-44.
    [19] BOUBEKRI K, SOUMARE A, MARDAD I, LYAMLOULI K, OUHDOUCH Y, HAFIDI M, KOUISNI L. Multifunctional role of Actinobacteria in agricultural production sustainability:a review[J]. Microbiological Research, 2022, 261:127059.
    [20] MOHAMMADIPANAH F, WINK J. Actinobacteria from arid and desert habitats:diversity and biological activity[J]. Frontiers in Microbiology, 2016, 6:1541.
    [21] 方治国, 欧阳志云, 胡利锋, 王效科, 苗鸿. 城市生态系统空气微生物群落研究进展[J]. 生态学报, 2004, 24(2):315-322. FANG ZG, OUYANG ZY, HU LF, WANG XK, MIAO H. Progresses of airborne microbial communities in urban ecosystem[J]. Acta Ecologica Sinica, 2004, 24(2):315-322 (in Chinese).
    [22] JENSEN PR, MINCER TJ, WILLIAMS PG, FENICAL W. Marine actinomycete diversity and natural product discovery[J]. Antonie Van Leeuwenhoek, 2005, 87(1):43-48.
    [23] WU J, PENG Z, GUAN TW, YANG H, TIAN XQ. Diversity of Actinobacteria in sediments of Qaidam Lake and Qinghai Lake, China[J]. Archives of Microbiology, 2021, 203(6):2875-2885.
    [24] EL BAZ S, BAZ M, BARAKATE M, HASSANI L, EL GHARMALI A, IMZILN B. Resistance to and accumulation of heavy metals by Actinobacteria isolated from abandoned mining areas[J]. The Scientific World Journal, 2015, 2015:761834.
    [25] SCHABEREITER-GURTNER C, SAIZ-JIMENEZ C, PIÑAR G, LUBITZ W, RÖLLEKE S. Altamira cave Paleolithic paintings harbor partly unknown bacterial communities[J]. FEMS Microbiology Letters, 2002, 211(1):7-11.
    [26] XU JY, HAN YH, CHEN Y, ZHU LJ, MA LQ. Arsenic transformation and plant growth promotion characteristics of As-resistant endophytic bacteria from As-hyperaccumulator Pteris vittata[J]. Chemosphere, 2016, 144:1233-1240.
    [27] BULL AT. Actinobacteria of the Extremobiosphere[A]//Extremophiles Handbook[M]. Tokyo:Springer Japan, 2011:1203-1240.
    [28] SCHÜTZE E, KLOSE M, MERTEN D, NIETZSCHE S, SENFTLEBEN D, ROTH M, KOTHE E. Growth of streptomycetes in soil and their impact on bioremediation[J]. Journal of Hazardous Materials, 2014, 267:128-135.
    [29] GLICK BR. Plant growth-promoting bacteria:mechanisms and applications[J]. Scientifica, 2012, 2012:963401.
    [30] ZHANG L, ZENG Q, LIU X, CHEN P, GUO X, MA LZ, DONG H, HUANG Y. Iron reduction by diverse Actinobacteria under oxic and pH-neutral conditions and the formation of secondary minerals[J]. Chemical Geology, 2019, 525:390-399.
    [31] ANILKUMAR RR, EDISON LK, PRADEEP NS. Exploitation of Fungi and Actinobacteria for Sustainable Agriculture[A]//Microbial Biotechnology[M]. Singapore:Springer, 2017:135-162.
    [32] BOPIN S, PRAJAPATI K. Isolation of potassium solubilizing actinomycetes from ceramic industry soils[J]. Paripex Indian Journal of Research, 2021:117-119.
    [33] 王新, 张亚楠, 葛玲. 复配农药污染土壤的微生物修复研究进展[J]. 环境化学, 2022, 41(10):3244-3253. WANG X, ZHANG YN, GE L. Research progress of microbial remediation of soil contaminated by compound pesticide[J]. Environmental Chemistry, 2022, 41(10):3244-3253 (in Chinese).
    [34] REHFUSS M, URBAN J. Rhodococcus phenolicus sp. nov., a novel bioprocessor isolated actinomycete with the ability to degrade chlorobenzene, dichlorobenzene and phenol as sole carbon sources[J]. Systematic and Applied Microbiology, 2005, 28(8):695-701.
    [35] VANDERGEIZE R, DIJKHUIZEN L. Harnessing the catabolic diversity of Rhodococci for environmental and biotechnological applications[J]. Current Opinion in Microbiology, 2004, 7(3):255-261.
    [36] NALLI S, COOPER DG, NICELL JA. Biodegradation of plasticizers by Rhodococcus rhodochrous[J]. Biodegradation, 2002, 13(5):343-352.
    [37] NISHIOKA T, IWATA M, IMAOKA T, MUTOH M, EGASHIRA Y, NISHIYAMA T, SHIN T, FUJII T. A mono-2-ethylhexyl phthalate hydrolase from a Gordonia sp. that is able to dissimilate di-2-ethylhexyl phthalate[J]. Applied and Environmental Microbiology, 2006, 72(4):2394-2399.
    [38] CHATTERJEE S, DUTTA TK. Metabolism of butyl benzyl phthalate by Gordonia sp. strain MTCC 4818[J]. Biochemical and Biophysical Research Communications, 2003, 309(1):36-43.
    [39] 韩永和, 何睿文, 李超, 向萍, 罗军, 崔昕毅. 邻苯二甲酸酯降解细菌的多样性、降解机理及环境应用[J]. 生态毒理学报, 2016, 11(2):37-49. HAN YH, HE RW, LI C, XIANG P, LUO J, CUI XY. Phthalic acid esters-degrading bacteria:biodiversity, degradation mechanisms and environmental applications[J]. Asian Journal of Ecotoxicology, 2016, 11(2):37-49 (in Chinese).
    [40] BOSCO F, MOLLEA C. Biodegradation of natural rubber:microcosm study[J]. Water, Air, & Soil Pollution, 2021, 232(6):227.
    [41] TSITKO I. Characterization of Actinobacteria degrading and tolerating organic pollutants[D]. Finland:Ph.D Dissertation of University of Helsinki, 2007.
    [42] SIMÓN SOLÁ MZ, LOVAISA N, DÁVILA COSTA JS, BENIMELI CS, POLTI MA, ALVAREZ A. Multi-resistant plant growth-promoting Actinobacteria and plant root exudates influence Cr(VI) and lindane dissipation[J]. Chemosphere, 2019, 222:679-687.
    [43] NAKOUTI I, SIHANONTH P, HOBBS G. A new approach to isolating siderophore-producing Actinobacteria[J]. Letters in Applied Microbiology, 2012, 55(1):68-72.
    [44] FUENTES MS, BENIMELI CS, CUOZZO SA, AMOROSO MJ. Isolation of pesticide-degrading actinomycetes from a contaminated site:bacterial growth, removal and dechlorination of organochlorine pesticides[J]. International Biodeterioration & Biodegradation, 2010, 64(6):434-441.
    [45] BENTLEY SD, CHATER KF, CERDEÑO-TÁRRAGA AM, CHALLIS GL, THOMSON NR, JAMES KD, HARRIS DE, QUAIL MA, KIESER H, HARPER D, BATEMAN A, BROWN S, CHANDRA G, CHEN CW, COLLINS M, CRONIN A, FRASER A, GOBLE A, HIDALGO J, HORNSBY T, et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2)[J]. Nature, 2002, 417(6885):141-147.
    [46] ORTIZ-HERNÁNDEZ ML, SÁNCHEZ-SALINAS E. Biodegradación del plaguicida organofosforado tetraclorvinfos por bacterias aisladas de suelos agrícolas en México[J]. Revista Internacional De Contaminacion Ambiental, 2010, 26(1):27-38.
    [47] ÖZTÜRK A. The use of Streptomyces coelicolor in the removal of heavy metals[J]. Advanced Techniques in Biology & Medicine, 2015, 4(1):1000168.
    [48] UNDABARRENA A, UGALDE JA, SEEGER M, CÁMARA B. Genomic data mining of the marine Actinobacteria Streptomyces sp. H-KF8 unveils insights into multi-stress related genes and metabolic pathways involved in antimicrobial synthesis[J]. PeerJ, 2017, 5:e2912.
    [49] HAN YH, FU JW, XIANG P, CAO Y, RATHINASABAPATHI B, CHEN Y, MA LQ. Arsenic and phosphate rock impacted the abundance and diversity of bacterial arsenic oxidase and reductase genes in rhizosphere of As-hyperaccumulator Pteris vittata[J]. Journal of Hazardous Materials, 2017, 321:146-153.
    [50] EL-MOTALEB MMA, EL-SABBAGH SM, EL-DIN MOHAMED WS, WAFY K. Biosorption of Cu2+, Pb2+ and Cd2+ from wastewater by dead biomass of Streptomyces cyaneus Kw42[J]. International Journal of Current Microbiology and Applied Sciences, 2020, 9(1):422-435.
    [51] SHARMA S, CAVALLARO G, ROSATO A. A systematic investigation of multiheme c-type cytochromes in prokaryotes[J]. Journal of Biological Inorganic Chemistry, 2010, 15(4):559-571.
    [52] NAKOUTI I, HOBBS G. A new approach to studying ion uptake by actinomycetes[J]. Journal of Basic Microbiology, 2013, 53(11):913-916.
    [53] HAFERBURG G, KOTHE E. Microbes and metals:interactions in the environment[J]. Journal of Basic Microbiology, 2007, 47(6):453-467.
    [54] CRITS-CHRISTOPH A, ROBINSON CK, BARNUM T, DAVILA AF, JEDYNAK B, MCKAY CP, DIRUGGIERO J. Colonization patterns of soil microbial communities in the Atacama Desert[J]. Microbiome, 2013, 1(1):28.
    [55] MENENDEZ E, CARRO L. Actinobacteria and Their Role as Plant Probiotics[A]//Biofertilizers for Sustainable Agriculture and Environment[M]. Cham:Springer International Publishing, 2019:333-351.
    [56] YAMAURA M, UCHIUMI T, HIGASHI S, ABE M, KUCHO KI. Identification by suppression subtractive hybridization of Frankia genes induced under nitrogen-fixing conditions[J]. Applied and Environmental Microbiology, 2010, 76(5):1692-1694.
    [57] 陈启锋, 李志真, 黄群策. 弗兰克氏菌的研究进展与前景[J]. 福建农业大学学报(自然科学版), 1998, 27(4):385-392. CHEN QF, LI ZZ, HUANG QC. Advances and prospects in Frankia actinomyces[J]. Journal of Fujian Agricultural University (Natural Science Edition), 1998, 27(4):385-392. (in Chinese).
    [58] 冯天祥, 陆可茵, 陆兰依塔, 陈海敏, 盛清. 植物内生放线菌多样性研究进展[J]. 微生物学杂志, 2015, 35(3):97-103. FENG TX, LU KY, LU LYT, CHEN HM, SHENG Q. Research progress in diversity of endophytic actinomycetes[J]. Journal of Microbiology, 2015, 35(3):97-103 (in Chinese).
    [59] KANG CH, KWON YJ, SO JS. Soil bioconsolidation through microbially induced calcite precipitation by Lysinibacillus sphaericus WJ-8[J]. Geomicrobiology Journal, 2016, 33(6):473-478.
    [60] BORSATO A, FRISIA S, JONES B, van der BORG K. Calcite moonmilk:crystal morphology and environment of formation in caves in the Italian Alps[J]. Journal of Sedimentary Research, 2000, 70(5):1171-1182.
    [61] de MANDAL S, CHATTERJEE R, KUMAR NS. Dominant bacterial phyla in caves and their predicted functional roles in C and N cycle[J]. BMC Microbiology, 2017, 17(1):90.
    [62] UMEZAWA H, OKAMI Y, HASHIMOTO T, SUHARA Y, HAMADA M, TAKEUCHI T. A new antibiotic, kasugsmycin[J]. The Journal of Antibiotics, 1965, 18:101-103.
    [63] FAYIGA AO, NWOKE OC. Phosphate rock:origin, importance, environmental impacts, and future roles[J]. Environmental Reviews, 2016, 24(4):403-415.
    [64] MOHAMED HM, EL-HOMOSY RF, ABD-ELLATEF AE H, SALH FM, HUSSEIN MY. Identification of yeast strains isolated from agricultural soils for releasing potassium-bearing minerals[J]. Geomicrobiology Journal, 2017, 34(3):261-266.
    [65] SHIGAKI F, SHARPLEY A, PROCHNOW LI. Animal-based agriculture, phosphorus management and water quality in Brazil:options for the future[J]. Scientia Agricola, 2006, 63(2):194-209.
    [66] GUARINO C, SCIARRILLO R. Effectiveness of in situ application of an integrated phytoremediation system (IPS) by adding a selected blend of rhizosphere microbes to heavily multi-contaminated soils[J]. Ecological Engineering, 2017, 99:70-82.
    [67] ALI A, GUO D, MAHAR A, MA F, LI RH, SHEN F, WANG P, ZHANG ZQ. Streptomyces pactum assisted phytoremediation in Zn/Pb smelter contaminated soil of Feng County and its impact on enzymatic activities[J]. Scientific Reports, 2017, 7:46087.
    [68] 董亮, 张秀蓝, 史双昕, 许鹏军, 周丽, 杨文龙, 张利飞, 张烃, 黄业茹. 新型持久性有机污染物分析方法研究进展[J]. 中国科学:化学, 2013, 43(3):336-350. DONG L, ZHANG XL, SHI SX, XU PJ, ZHOU L, YANG WL, ZHANG LF, ZHANG T, HUANG YR. Review on the analytical methods of emerging persistent organic pollutants[J]. Scientia Sinica Chimica, 2013, 43(3):336-350 (in Chinese).
    [69] ATLAS RM. Microbial degradation of petroleum hydrocarbons:an environmental perspective[J]. Microbiological Reviews, 1981, 45(1):180-209.
    [70] BAOUNE H, APARICIO JD, PUCCI G, EL HADJ-KHELIL AO, POLTI MA. Bioremediation of petroleum-contaminated soils using Streptomyces sp. Hlh1[J]. Journal of Soils and Sediments, 2019, 19(5):2222-2230.
    [71] BURGHAL AA, AL-MUDAFFAR NA, MAHDI KH. Ex situ bioremediation of soil contaminated with crude oil by use of actinomycetes consortia for process bioaugmentation[J]. European Journal of Experimental Biology, 2015, 5(5):24-30.
    [72] 文一, 廖晓勇, 阎秀兰. 链霉菌的抗砷特性及其对蜈蚣草富集砷的作用[J]. 生态毒理学报, 2013, 8(2):186-193. WEN Y, LIAO XY, YAN XL. Arsenic-resistance of Streptomyces sp. and its effects on arsenic enrichment of Pteris vittata L[J]. Asian Journal of Ecotoxicology, 2013, 8(2):186-193 (in Chinese).
    [73] ALI A, GUO D, MAHAR A, WANG P, MA F, SHEN F, LI R, ZHANG Z. Phytoextraction of toxic trace elements by Sorghum bicolor inoculated with Streptomyces pactum (Act12) in contaminated soils[J]. Ecotoxicology and Environmental Safety, 2017, 139:202-209.
    [74] GUO D, ALI A, ZHANG Z. Streptomyces pactum and sulfur mediated the rhizosphere microhabitats of potherb mustard after a phytoextraction trial[J]. Environmental Pollution, 2021, 281:116968.
    [75] ALI A, LI Y, JEYASUNDAR PGSA, AZEEM M, SU J, WAHID F, MAHAR A, SHAH MZ, LI R, ZHANG Z. Streptomyces pactum and Bacillus consortium influenced the bioavailability of toxic metals, soil health, and growth attributes of Symphytum officinale in smelter/mining polluted soil[J]. Environmental Pollution, 2021, 291:118237.
    [76] 杨云锋. 微生物"暗物质"研究曙光[J]. 微生物学通报, 2020, 47(9):2683-2684. YANG YF. Dawn of microbial "dark matter" research[J]. Microbiology China, 2020, 47(9):2683-2684 (in Chinese).
    [77] DANCE A. The search for microbial dark matter[J]. Nature, 2020, 582(7811):301-303.
    [78] GU SH, WEI Z, SHAO ZY, FRIMAN VP, CAO KH, YANG TJ, KRAMER J, WANG XF, LI M, MEI XL, XU YC, SHEN QR, KÜMMERLI R, JOUSSET A. Competition for iron drives phytopathogen control by natural rhizosphere microbiomes[J]. Nature Microbiology, 2020, 5(8):1002-1010.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

崔熙雯,林小锐,李家兵,张虹,韩永和. 抗逆放线菌的多样性、功能特性及其在环境修复中的应用[J]. 微生物学报, 2023, 63(5): 1930-1943

复制
分享
文章指标
  • 点击次数:703
  • 下载次数: 1371
  • HTML阅读次数: 1611
  • 引用次数: 0
历史
  • 收稿日期:2022-12-26
  • 最后修改日期:2023-03-06
  • 在线发布日期: 2023-05-22
  • 出版日期: 2023-05-04
文章二维码