β-葡萄糖苷酶的糖耐受和促活性质研究
作者:
基金项目:

安徽省科技攻关重大项目(202003a06020015);国家自然科学基金(31870056);国家重点研发计划(2018YFC0311106)


Study and rational engineering of the glucose tolerance and promotion of β-glucosidase
Author:
  • LI Xuan

    LI Xuan

    School of Life Sciences, Anhui University, Hefei 230601, Anhui, China;Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601, Anhui, China;Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei 230601, Anhui, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Shuaifeng

    LIU Shuaifeng

    School of Life Sciences, Anhui University, Hefei 230601, Anhui, China;Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601, Anhui, China;Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei 230601, Anhui, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • MENG Chunyu

    MENG Chunyu

    School of Life Sciences, Anhui University, Hefei 230601, Anhui, China;Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601, Anhui, China;Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei 230601, Anhui, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHENG Yao

    CHENG Yao

    School of Life Sciences, Anhui University, Hefei 230601, Anhui, China;Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601, Anhui, China;Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei 230601, Anhui, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • FANG Wei

    FANG Wei

    School of Life Sciences, Anhui University, Hefei 230601, Anhui, China;Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601, Anhui, China;Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei 230601, Anhui, China;Anhui University Green Industry Innovation Research Institute, Hefei 230000, Anhui, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHANG Yinliang

    ZHANG Yinliang

    School of Life Sciences, Anhui University, Hefei 230601, Anhui, China;Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601, Anhui, China;Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei 230601, Anhui, China;Anhui University Green Industry Innovation Research Institute, Hefei 230000, Anhui, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHANG Xuecheng

    ZHANG Xuecheng

    School of Life Sciences, Anhui University, Hefei 230601, Anhui, China;Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601, Anhui, China;Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei 230601, Anhui, China;Anhui University Green Industry Innovation Research Institute, Hefei 230000, Anhui, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • XIAO Yazhong

    XIAO Yazhong

    School of Life Sciences, Anhui University, Hefei 230601, Anhui, China;Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601, Anhui, China;Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei 230601, Anhui, China;Anhui University Green Industry Innovation Research Institute, Hefei 230000, Anhui, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】以葡萄糖耐受并促活的β-葡萄糖苷酶Bgl2A为出发材料,寻找与β-葡萄糖苷酶的葡萄糖耐受和促活性质相关的重要氨基酸残基位点并对其进行突变;对突变酶性质进行检测,结合分子对接,探究突变对酶的糖耐受和促活性质的影响及机制;进而对葡萄糖不耐受的Bgl3A (Bgl2A:A22S/V224S)进行分子改造,以获得应用潜能更好的突变酶。【方法】通过序列和结构比对、统计耦联分析和结构分析,选取Bgl2A底物通道口、蛋白质表面以及活性中心附近可能间接影响葡萄糖耐受和促活性质的残基作为突变位点,构建了多个突变酶,并对其酶学性质进行检测。【结果】以Bgl2A为出发酶,D322I、W325A、W126Y、F172N、C173I和N226V的糖耐受和促活性质显著提升。分子对接提示,这些突变可能是通过变构效应影响活性中心与葡萄糖结合的自由能,从而改变酶葡萄糖耐受和促活性质。据此,在Bgl3A分子上对应构建多个突变体,筛选获得了较出发酶在糖耐受和促活性质提升的同时保持较高酶活和稳定性的突变酶N226V和F172N。【结论】除了酶与葡萄糖直接结合的位点,不与葡萄糖直接相互作用的位点也可通过远程作用间接影响β-葡萄糖苷酶的葡萄糖耐受和促活性质,这为β-葡萄糖苷酶的相关理性改造提供了新思路。

    Abstract:

    [Objective] In this study, we identified possibly critical sites for the higher glucose tolerance and promotion of Bgl2A through three ways, and checked their significance by mutation and characterized the mutants. Further, we investigated the mechanism of the critical sites affecting the glucose tolerance and promotion by molecular docking. Further, Bgl3A (Bgl2A:A22S/V224S), with low glucose tolerance, was rationally engineered to obtain mutants with better application potential. [Methods] Through sequence and structure comparison, statistical coupling analysis, and structural analysis, we selected the residues in the substrate tunnel and near the active center that may indirectly affect the glucose tolerance and promotion for mutations to different type amino acids, then prepared the mutants and tested their enzymatic properties. [Results] Some mutants with higher glucose tolerance and promotion, such as D322I, W325A, W126Y, F172N, C173I and N226V were obtained. Molecular docking showed that these mutations may change the energy of glucose binding to the active center by allosteric effect, thus influence the glucose tolerance and promotion. Based on the above results, corresponding mutants were then made for Bgl3A. Some mutants, such as N226V and F172N, with high glucose tolerance and promotion while considerable activity and stability remained, have higher application potential. [Conclusion] The results demonstrated that in addition to the sites where glucose directly binds to, there are other sites that do not interact directly with glucose can indirectly influence the glucose tolerance and promotion of β-glucosidase through long range effect, which provides a new clue for rational engineering β-glucosidases.

    参考文献
    [1] WÖHLER F, LIEBIG J. Ueber Die bildung des bittermandelöls[J]. Annalen Der Pharmacie, 1837, 22(1):1-24.
    [2] SINGH G, VERMA AK, KUMAR V. Catalytic properties, functional attributes and industrial applications of β-glucosidases[J]. 3 Biotech, 2016, 6(1):3-16.
    [3] JUNG DH, SEO DH, PARK JH, KIM MJ, BAEK NI, PARK C. Enzymatic synthesis of β-glucosylglycerol and its unnatural glycosides via β-glycosidase and amylosucrase[J]. Journal of Microbiology and Biotechnology, 2019, 29(4):562-570.
    [4] RYE CS, WITHERS SG. Glycosidase mechanisms[J]. Current Opinion in Chemical Biology, 2000, 4(5):573-580.
    [5] GUTIERREZ-GUTIERREZ DA, FUENTES-GARIBAY JA, VIADER-SALVADÓ JM, GUERRERO- OLAZARÁN M. Biochemical characterization of the β-glucosidase Glu1B from Coptotermes formosanus produced in Pichia pastoris[J]. Enzyme and Microbial Technology, 2023, 163:110155-110164.
    [6] ZHANG XM, CHEN FY, HE C, FANG W, FANG ZM, ZHANG XC, WANG XT, XIAO YZ. Improving the thermostability of a GH97 dextran glucosidase by rational design[J]. Biotechnology Letters, 2020, 42(11):2211-2221.
    [7] MAICAS S, MATEO JJ. Hydrolysis of terpenyl glycosides in grape juice and other fruit juices:a review[J]. Applied Microbiology and Biotechnology, 2005, 67(3):322-335.
    [8] XU YH, FENG XD, JIA JT, CHEN XY, JIANG T, RASOOL A, LV B, QU LT, LI C. A novel β-glucuronidase from Talaromyces pinophilus Li-93 precisely hydrolyzes glycyrrhizin into glycyrrhetinic acid 3-O-mono-β-d-glucuronide[J]. Applied and Environmental Microbiology, 2018, 84(19):e00755-e00718.
    [9] SINGHANIA RR, PATEL AK, PANDEY A, GANANSOUNOU E. Genetic modification:a tool for enhancing beta-glucosidase production for biofuel application[J]. Bioresource Technology, 2017, 245:1352-1361.
    [10] SALGADO JCS, MELEIRO LP, CARLI S, WARD RJ. Glucose tolerant and glucose stimulated β-glucosidases-a review[J]. Bioresource Technology, 2018, 267:704-713.
    [11] CAO LC, CHEN R, HUANG X, LI SF, ZHANG SF, YANG XP, QIN ZM, KONG W, XIE W, LIU YH. Engineering of β-glucosidase Bgl15 with simultaneously enhanced glucose tolerance and thermostability to improve its performance in high-solid cellulose hydrolysis[J]. Journal of Agricultural and Food Chemistry, 2020, 68(19):5391-5401.
    [12] YANG Y, ZHANG XX, YIN Q, FANG W, FANG ZM, WANG XT, ZHANG XC, XIAO YZ. A mechanism of glucose tolerance and stimulation of GH1 β-glucosidases[J]. Scientific Reports, 2015, 5:17296-17307.
    [13] PANG PJ, CAO LC, LIU YH, XIE W, WANG Z. Structures of a glucose-tolerant β-glucosidase provide insights into its mechanism[J]. Journal of Structural Biology, 2017, 198(3):154-162.
    [14] ARIAEENEJAD S, NOOSHI-NEDAMANI S, RAHBAN M, KAVOUSI K, PIRBALOOTI AG, MIRGHADERI S, MOHAMMADI M, MIRZAEI M, SALEKDEH GH. A novel high glucose-tolerant β-glucosidase:targeted computational approach for metagenomic screening[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8:813-826.
    [15] de GIUSEPPE PO, SOUZA TACB, SOUZA FHM, ZANPHORLIN LM, MACHADO CB, WARD RJ, JORGE JA, FURRIEL RPM, MURAKAMI MT. Structural basis for glucose tolerance in GH1 β-glucosidases[J]. Acta Crystallographica Section D, Biological Crystallography, 2014, 70(Pt 6):1631-1639.
    [16] WOOD TM, MCCRAE SI. Purification and some properties of the extracellular β-d-glucosidase of the cellulolytic fungus Trichoderma koningii[J]. Microbiology, 1982, 128(12):2973-2982.
    [17] SINHA SK, DATTA S. β-glucosidase from the hyperthermophilic archaeon Thermococcus sp. is a salt-tolerant enzyme that is stabilized by its reaction product glucose[J]. Applied Microbiology and Biotechnology, 2016, 100(19):8399-8409.
    [18] MATSUZAWA T, JO T, UCHIYAMA T, MANNINEN JA, ARAKAWA T, MIYAZAKI K, FUSHINOBU S, YAOI K. Crystal structure and identification of a key amino acid for glucose tolerance, substrate specificity, and transglycosylation activity of metagenomic β-glucosidase Td2F2[J]. The FEBS Journal, 2016, 283(12):2340-2353.
    [19] LIU Y, LI R, WANG J, ZHANG XH, JIA R, GAO Y, PENG H. Increased enzymatic hydrolysis of sugarcane bagasse by a novel glucose- and xylose-stimulated β-glucosidase from Anoxybacillus flavithermus subsp. yunnanensis E13T[J]. BMC Biochemistry, 2017, 18(1):4-11.
    [20] UCHIYAMA T, YAOI K, MIYAZAKI K. Glucose-tolerant β-glucosidase retrieved from a Kusaya gravy metagenome[J]. Frontiers in Microbiology, 2015, 6:548-556.
    [21] MALLEK-FAKHFAKH H, BELGHITH H. Physicochemical properties of thermotolerant extracellular β-glucosidase from Talaromyces thermophilus and enzymatic synthesis of cello-oligosaccharides[J]. Carbohydrate Research, 2016, 419:41-50.
    [22] CHRISTAKOPOULOS P, GOODENOUGH PW, KEKOS D, MACRIS BJ, CLAEYSSENS M, BHAT MK. Purification and characterisation of an extracellular beta-glucosidase with transglycosylation and exo-glucosidase activities from Fusarium oxysporum[J]. European Journal of Biochemistry, 1994, 224(2):379-385.
    [23] HALABI N, RIVOIRE O, LEIBLER S, RANGANATHAN R. Protein sectors:evolutionary units of three-dimensional structure[J]. Cell, 2009, 138(4):774-786.
    [24] SUN JJ, WANG W, YING Y, HAO JH. A novel glucose-tolerant GH1 β-glucosidase and improvement of its glucose tolerance using site-directed mutation[J]. Applied Biochemistry and Biotechnology, 2020, 192(3):999-1015.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李璇,刘帅峰,孟春雨,程尧,房伟,张寅良,张学成,肖亚中. β-葡萄糖苷酶的糖耐受和促活性质研究[J]. 微生物学报, 2023, 63(5): 2007-2019

复制
分享
文章指标
  • 点击次数:340
  • 下载次数: 860
  • HTML阅读次数: 999
  • 引用次数: 0
历史
  • 收稿日期:2023-02-28
  • 最后修改日期:2023-04-19
  • 在线发布日期: 2023-05-22
  • 出版日期: 2023-05-04
文章二维码