微生物厌氧氨氧化耦合铁还原的研究进展及展望
作者:
基金项目:

国家自然科学基金(42172340)


Research progress and prospect of microbial ammonium oxidation coupled to Fe(III) reduction
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [98]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    厌氧氨氧化耦合铁还原[ammonium oxidation coupled to Fe(III) reduction, Feammox]作为一种连接氮循环和铁循环之间的氮代谢途径,在自然界中氨氮转化过程中起到了重要作用。系统研究Feammox驱动的氮铁的生物地球化学耦合过程及其受控因素,有助于深入理解地球元素循环的微生物机制,也有助于揭示Feammox在缺氧地质历史时期对古海洋氮库演变和含铁矿物形成过程中的作用。本文从Feammox发展历史、相关微生物、影响因素和潜在地质意义等方面综述了Feammox的研究过程和研究内容,并对Feammox的未来研究方向提出展望。

    Abstract:

    Ammonium oxidation coupled to Fe(III) reduction (Feammox), as a nitrogen metabolic pathway connecting N cycle and Fe cycle, plays an important role in the process of ammonia nitrogen conversion in nature. A systematic study of the biogeochemical coupling process of nitrogen and iron driven by Feammox and its controlling factors will help to understand microbial mechanism of earth’s element cycle in depth, and also avail to reveal of the role of Feammox in the evolution of the nitrogen pool and the formation of iron-bearing minerals in Paleo-ocean. This review mainly summarized the development history, related microorganisms, influencing factors and potential geological significance of Feammox, followed by prospect on the future research of Feammox.

    参考文献
    [1] HUANG LQ, DONG HL, JIANG HC, WANG S, YANG J. Relative importance of advective flow versus environmental gradient in shaping aquatic ammonium oxidizers near the Three Gorges Dam of the Yangtze River, China[J]. Environmental Microbiology Reports, 2016, 8(5):667-674.
    [2] HUANG LQ, FENG C, JIANG HC, DONG HL, LIU ZZ, ZENG Q, WANG X, ZHANG L. Reduction of structural Fe(III) in nontronite by thermophilic microbial consortia enriched from hot springs in Tengchong, Yunnan Province, China[J]. Chemical Geology, 2018, 479:47-57.
    [3] HUANG LQ, LIU ZZ, DONG HL, YU T, JIANG HC, PENG YE, SHI L. Coupling quinoline degradation with Fe redox in clay minerals:a strategy integrating biological and physicochemical processes[J]. Applied Clay Science, 2020, 188:105504.
    [4] HUANG LQ, YU Q, LIU W, WANG JG, GUO WX, JIA ED, ZENG Q, QIN RJ, ZHENG JQ, HOFMOCKEL KS, DONG HL, JIANG HC, ZHU ZH. Molecular determination of organic adsorption sites on smectite during Fe redox processes using ToF-SIMS analysis[J]. Environmental Science & Technology, 2021, 55(10):7123-7134.
    [5] JIANG HC, HUANG LQ, DENG Y, WANG S, ZHOU Y, LIU L, DONG HL. Latitudinal distribution of ammonia-oxidizing bacteria and Archaea in the agricultural soils of Eastern China[J]. Applied and Environmental Microbiology, 2014, 80(18):5593-5602.
    [6] HUANG LQ, LUO JY, LI LX, JIANG HC, SUN XX, YANG J, SHE WY, LIU W, LI LQ, DAVIS AP. Unconventional microbial mechanisms for the key factors influencing inorganic nitrogen removal in stormwater bioretention columns[J]. Water Research, 2021, 209:117895.
    [7] YANG WH, WEBER KA, SILVER WL. Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction[J]. Nature Geoscience, 2012, 5(8):538-541.
    [8] HUANG S, JAFFÉ PR. Characterization of incubation experiments and development of an enrichment culture capable of ammonium oxidation under iron-reducing conditions[J]. Biogeosciences, 2015, 12(3):769-779.
    [9] CLEMENT JC, SHRESTHA J, EHRENFELD JG, JAFFÉ PR. Ammonium oxidation coupled to dissimilatory reduction of iron under anaerobic conditions in wetland soils[J]. Soil Biology and Biochemistry, 2005, 37(12):2323-2328.
    [10] DING LJ, AN XL, LI S, ZHANG GL, ZHU YG. Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from paddy soils in a chronosequence[J]. Environmental Science & Technology, 2014, 48(18):10641-10647.
    [11] ZHOU GW, YANG XR, LI H, MARSHALL CW, ZHENG BX, YAN Y, SU JQ, ZHU YG. Electron shuttles enhance anaerobic ammonium oxidation coupled to iron(III) reduction[J]. Environmental Science & Technology, 2016, 50(17):9298-9307.
    [12] SHRESTHA J, RICH JJ, EHRENFELD JG, JAFFE PR. Oxidation of ammonium to nitrite under iron-reducing conditions in wetland soils[J]. Soil Science, 2009, 174(3):156-164.
    [13] LI XF, HOU LJ, LIU M, ZHENG YL, YIN GY, LIN XB, CHENG L, LI Y, HU XT. Evidence of nitrogen loss from anaerobic ammonium oxidation coupled with ferric iron reduction in an intertidal wetland[J]. Environmental Science & Technology, 2015, 49(19):11560-11568.
    [14] RIOS-DEL TORO EE, VALENZUELA EI, LÓPEZ- LOZANO NE, SÁNCHEZ-RODRÍGUEZ MA, CALVARIO-MARTÍNEZ O, SÁNCHEZ-CARRILLO S, CERVANTES FJ. Anaerobic ammonium oxidation linked to sulfate and ferric iron reduction fuels nitrogen loss in marine sediments[J]. Biodegradation, 2018, 29(5):429-442.
    [15] KIRIAZIS NA. Evidence for iron-dependent anaerobic ammonium oxidation to nitrate (Feammox) in deep-sea sediments (doctoral dissertation)[D]. "Georgia Institute of Technology" +"(doctoral) dissertation", 2015.
    [16] DING BJ, LI ZK, QIN YB. Nitrogen loss from anaerobic ammonium oxidation coupled to Iron(III) reduction in a riparian zone[J]. Environmental Pollution, 2017, 231:379-386.
    [17] 李亚男, 姚丽, 隋倩雯, 张俊亚, 陈彦霖, 魏源送. 厌氧氨氧化细菌富集培养过程微生物结构与功能解析[J]. 环境科学学报, 2021, 41(1):92-101. LI YN, YAO L, SUI QW, ZHANG JY, CHEN YL, WEI YS. Evolution of microbial structures and functions during the enrichment of Anammox bacteria[J]. Acta Scientiae Circumstantiae, 2021, 41(1):92-101(in Chinese).
    [18] LUTHER GW, SUNDBY B, LEWIS BL, BRENDEL PJ, SILVERBERG N. Interactions of Manganese with the nitrogen cycle:alternative pathways to dinitrogen[J]. Geochimica et Cosmochimica Acta, 1997, 61(19):4043-4052.
    [19] HUANG S, JAFFÉ PR. Isolation and characterization of an ammonium-oxidizing iron reducer:Acidimicrobiaceae sp. A6[J]. PLoS One, 2018, 13(4):e0194007.
    [20] HUANG S, CHEN C, PENG XC, JAFFÉ PR. Environmental factors affecting the presence of Acidimicrobiaceae and ammonium removal under iron-reducing conditions in soil environments[J]. Soil Biology and Biochemistry, 2016, 98:148-158.
    [21] LI X, HUANG Y, LIU HW, WU C, BI W, YUAN Y, LIU X. Simultaneous Fe(III) reduction and ammonia oxidation process in Anammox sludge[J]. Journal of Environmental Sciences, 2018, 64:42-50.
    [22] GE JY, HUANG S, HAN I, JAFFÉ PR. Degradation of tetra- and trichloroethylene under iron reducing conditions by Acidimicrobiaceae sp. A6[J]. Environmental Pollution, 2019, 247:248-255.
    [23] HUANG S, SIMA M, LONG Y, MESSENGER C, JAFFÉ PR. Anaerobic degradation of perfluorooctanoic acid (PFOA) in biosolids by Acidimicrobium sp. strain A6[J]. Journal of Hazardous Materials, 2022, 424:127699.
    [24] RUIZ-URIGÜEN M, SHUAI WT, JAFFÉ PR. Electrode colonization by the feammox bacterium Acidimicrobiaceae sp. strain A6[J]. Applied and Environmental Microbiology, 2018, 84(24):e02029-18.
    [25] RUIZ-URIGÜEN M, SHUAI W, JAFFÉ P. Feammox Acidimicrobiaceae bacterium A6, a lithoautotrophic electrode-colonizing bacterium[J]. Applied and Environmental Microbiology, 2018:300731.
    [26] RUIZ-URIGÜEN M, STEINGART D, JAFFÉ PR. Oxidation of ammonium by Feammox Acidimicrobiaceae sp. A6 in anaerobic microbial electrolysis cells[J]. Environmental Science:Water Research & Technology, 2019, 5(9):1582-1592.
    [27] WU Y, CHEN C, MAO XY, PENG XC. Study on performance of the Feammox biofilm-reactor[J]. China Environmental Science, 2017, 37:3353-3362.
    [28] SAWAYAMA S. Possibility of anoxic ferric ammonium oxidation[J]. Journal of Bioscience and Bioengineering, 2006, 101(1):70-72.
    [29] DING BJ, QIN YB, LUO WQ, LI ZK. Spatial and seasonal distributions of Feammox from ecosystem habitats in the Wanshan region of the Taihu watershed, China[J]. Chemosphere, 2020, 239:124742.
    [30] LI H, SU JQ, YANG XR, ZHOU GW, LASSEN SB, ZHU YG. RNA stable isotope probing of potential feammox population in paddy soil[J]. Environmental Science & Technology, 2019, 53(9):4841-4849.
    [31] QIN YB, DING BJ, LI ZK, CHEN S. Variation of Feammox following ammonium fertilizer migration in a wheat-rice rotation area, Taihu Lake, China[J]. Environmental Pollution, 2019, 252:119-127.
    [32] KAPPLER A, BRYCE C, MANSOR M, LUEDER U, BYRNE JM, SWANNER ED. An evolving view on biogeochemical cycling of iron[J]. Nature Reviews Microbiology, 2021, 19(6):360-374.
    [33] TAN X, XIE GJ, NIE WB, XING DF, LIU BF, DING J, REN NQ. Fe(III)-mediated anaerobic ammonium oxidation:a novel microbial nitrogen cycle pathway and potential applications[J]. Critical Reviews in Environmental Science and Technology, 2022, 52(16):2962-2994.
    [34] YANG YF, PENG H, NIU JF, ZHAO ZQ, ZHANG YB. Promoting nitrogen removal during Fe(III) reduction coupled to anaerobic ammonium oxidation (Feammox) by adding anthraquinone-2,6-disulfonate (AQDS)[J]. Environmental Pollution, 2019, 247:973-979.
    [35] PENG QA, SHAABAN M, WU YP, HU RG, WANG BY, WANG J. The diversity of iron reducing bacteria communities in subtropical paddy soils of China[J]. Applied Soil Ecology, 2016, 101:20-27.
    [36] ZHU JX, YAN XJ, ZHOU LA, LI N, LIAO CM, WANG X. Insight of bacteria and Archaea in Feammox community enriched from different soils[J]. Environmental Research, 2022, 203:111802.
    [37] 程宽, 李涵, 杜衍红, 董海波, 刘同旭. 微生物介导铁还原耦合氨氧化过程的研究进展[J]. 微生物学报, 2022, 62(6):2249-2264. CHENG K, LI H, DU YH, DONG HB, LIU TX. Microbes-mediated coupling of Fe(Ⅲ) reduction and ammonium oxidation[J]. Acta Microbiologica Sinica, 2022, 62(6):2249-2264(in Chinese).
    [38] BAO P, LI GX. Sulfur-driven iron reduction coupled to anaerobic ammonium oxidation[J]. Environmental Science & Technology, 2017, 51(12):6691-6698.
    [39] YAO ZB, WANG F, WANG CL, XU HC, JIANG HL. Anaerobic ammonium oxidation coupled to ferric iron reduction in the sediment of a eutrophic lake[J]. Environmental Science and Pollution Research, 2019, 26(15):15084-15094.
    [40] WANG XN, SUN GX, ZHU YG. Thermodynamic energy of anaerobic microbial redox reactions couples elemental biogeochemical cycles[J]. Journal of Soils and Sediments, 2017, 17(12):2831-2846.
    [41] YI B, WANG HH, ZHANG QC, JIN H, ABBAS T, LI Y, LIU YM, DI HJ. Alteration of gaseous nitrogen losses via anaerobic ammonium oxidation coupled with ferric reduction from paddy soils in Southern China[J]. Science of the Total Environment, 2019, 652:1139-1147.
    [42] GILSON ER, HUANG S, JAFFÉ PR. Biological reduction of uranium coupled with oxidation of ammonium by Acidimicrobiaceae bacterium A6 under iron reducing conditions[J]. Biodegradation, 2015, 26(6):475-482.
    [43] ZHU JX, LI T, LIAO CM, LI N, WANG X. A promising destiny for Feammox:from biogeochemical ammonium oxidation to wastewater treatment[J]. Science of the Total Environment, 2021, 790:148038.
    [44] WANG B, SUN B, LIU YL, YANG L. Effect of feammox on landfill leachate treatment and its influence on pH[J]. IOP Conference Series:Earth and Environmental Science, 2021, 770(1):012007.
    [45] ZHAO S, FENG SJ, WU CC, ZHANG J, CHEN KP. A review on new ammonium oxidation alternatives for effective nitrogen removal from wastewater[J]. Journal of Chemical Technology & Biotechnology, 2022, 97(8):1917-1928.
    [46] YAO ZB, YANG L, SONG N, WANG CH, JIANG HL. Effect of organic matter derived from algae and macrophyte on anaerobic ammonium oxidation coupled to ferric iron reduction in the sediment of a shallow freshwater lake[J]. Environmental Science and Pollution Research, 2020, 27(21):25899-25907.
    [47] SU JF, CHENG C, HUANG TL, MA F, LU JS, SHAO SC. Novel simultaneous Fe(Ⅲ) reduction and ammonium oxidation of Klebsiella sp. FC61 under the anaerobic conditions[J]. RSC Advances, 2016, 6(15):12584-12591.
    [48] LIU DM, ZHANG SR, FEI C, DING XD. Impacts of straw returning and N application on NH4+-N loss, microbially reducible Fe(III) and bacterial community composition in saline-alkaline paddy soils[J]. Applied Soil Ecology, 2021, 168:104115.
    [49] JIA R, LI LN, QU D, MI NN. Enhanced iron(III) reduction following amendment of paddy soils with biochar and glucose modified biochar[J]. Environmental Science and Pollution Research, 2018, 25(1):91-103.
    [50] AISHVARYA V, BARMAN S, PRADHAN N, GHOSH MK. Selective enhancement of Mn bioleaching from ferromanganese ores in presence of electron shuttles using dissimilatory Mn reducing consortia[J]. Hydrometallurgy, 2019, 186:269-274.
    [51] STERN N, MEJIA J, HE SM, YANG Y, GINDER-VOGEL M, RODEN EE. Dual role of humic substances As electron donor and shuttle for dissimilatory iron reduction[J]. Environmental Science & Technology, 2018, 52(10):5691-5699.
    [52] AHUJA EG, JANNING P, MENTEL M, GRAEBSCH A, BREINBAUER R, HILLER W, COSTISELLA B, THOMASHOW LS, MAVRODI DV, BLANKENFELDT W. PhzA/B catalyzes the formation of the tricycle in phenazine biosynthesis[J]. Journal of the American Chemical Society, 2008, 130(50):17053-17061.
    [53] TURICK CE, BELIAEV AS, ZAKRAJSEK BA, REARDON CL, LOWY DA, POPPY TE, MALONEY A, EKECHUKWU AA. The role of 4-hydroxyphenylpyruvate dioxygenase in enhancement of solid-phase electron transfer by Shewanella oneidensis MR-1[J]. FEMS Microbiology Ecology, 2009, 68(2):223-235.
    [54] YAN XJ, LEE HS, LI N, WANG X. The micro-niche of exoelectrogens influences bioelectricity generation in bioelectrochemical systems[J]. Renewable and Sustainable Energy Reviews, 2020, 134:110-184.
    [55] GUAN QS, CAO WZ, WANG M, WU GJ, WANG FF, JIANG C, TAO YR, GAO Y. Nitrogen loss through anaerobic ammonium oxidation coupled with iron reduction in a mangrove wetland[J]. European Journal of Soil Science, 2018, 69(4):732-741.
    [56] BEHERA P, MOHAPATRA M, KIM JY, ADHYA TK, PATTNAIK AK, RASTOGI G. Spatial and temporal heterogeneity in the structure and function of sediment bacterial communities of a tropical mangrove forest[J]. Environmental Science and Pollution Research, 2019, 26(4):3893-3908.
    [57] HERNANDEZ MM, MENÉNDEZ CM. Influence of seasonality and management practices on diversity and composition of fungal communities in vineyard soils[J]. Applied Soil Ecology, 2019, 135:113-119.
    [58] HUANG XL, GAO DW, PENG S, TAO Y. Effects of ferrous and Manganese ions on anammox process in sequencing batch biofilm reactors[J]. Journal of Environmental Sciences, 2014, 26(5):1034-1039.
    [59] DING BJ, LUO WQ, QIN YB, LI ZK. Effects of the addition of nitrogen and phosphorus on anaerobic ammonium oxidation coupled with iron reduction (Feammox) in the farmland soils[J]. Science of the Total Environment, 2020, 737:139849.
    [60] DING BJ, CHEN ZH, LI ZK, QIN YB, CHEN S. Nitrogen loss through anaerobic ammonium oxidation coupled to Iron reduction from ecosystem habitats in the Taihu Estuary region[J]. Science of the Total Environment, 2019, 662:600-606.
    [61] JEONG D, KIM W, LIM H, BAE H. Shift in bacterial community structure in response to salinity in a continuous anaerobic ammonium oxidation (anammox) reactor[J]. International Biodeterioration & Biodegradation, 2020, 147:104873.
    [62] GUAN YN, BAI JH, WANG JJ, WANG W, WANG W, ZHANG L, LI XW, LIU XH. Effects of groundwater tables and salinity levels on soil organic carbon and total nitrogen accumulation in coastal wetlands with different plant cover types in a Chinese Estuary[J]. Ecological Indicators, 2021, 121:106969.
    [63] AKHTAR M, HUSSAIN F, ASHRAF MY, QURESHI TM, AKHTER J, AWAN AR. Influence of salinity on nitrogen transformations in soil[J]. Communications in Soil Science and Plant Analysis, 2012, 43(12):1674-1683.
    [64] RIOS-DEL TORO EE, CERVANTES FJ. Anaerobic ammonium oxidation in marine environments:contribution to biogeochemical cycles and biotechnological developments for wastewater treatment[J]. Reviews in Environmental Science and Bio/Technology, 2019, 18(1):11-27.
    [65] 吴悦溪, 曾薇, 刘宏, 李健敏, 彭永臻. Feammox系统内氮素转化途径的研究[J]. 化工学报, 2020, 71(5):2265-2272, F0002. WU YX, ZENG W, LIU H, LI JM, PENG YZ. Exploration of nitrogen transformation pathway in Feammox[J]. CIESC Journal, 2020, 71(5):2265-2272, F0002(in Chinese).
    [66] DING BJ, ZHANG H, LUO WQ, SUN SY, CHENG F, LI ZK. Nitrogen loss through denitrification, anammox and Feammox in a paddy soil[J]. Science of the Total Environment, 2021, 773:145601.
    [67] LI YC, NING JF, LI Q, LI LF, BOLAN NS, SINGH BP, WANG HL. Effects of iron and nitrogen-coupled cycles on cadmium availability in acidic paddy soil from Southern China[J].Journal of Soils and Sediments, 2023, 23(1):431-445.
    [68] DING BJ, LI ZK, CAI MM, LU MZ, LIU WZ. Feammox is more important than anammox in anaerobic ammonium loss in farmland soils around Lake Taihu, China[J]. Chemosphere, 2022, 305:135412.
    [69] ZHANG LX, GUAN YT, JIANG SC. Investigations of soil autotrophic ammonia oxidizers in farmlands through genetics and big data analysis[J]. Science of the Total Environment, 2021, 777:146091.
    [70] QIN YB, CHEN ZH, DING BJ, LI ZK. Impact of sand mining on the carbon sequestration and nitrogen removal ability of soil in the riparian area of Lijiang River, China[J]. Environmental Pollution, 2020, 261:114220.
    [71] GUAN QS, ZHANG YL, TAO YR, CHANG CT, CAO WZ. Graphene functions as a conductive bridge to promote anaerobic ammonium oxidation coupled with iron reduction in mangrove sediment slurries[J]. Geoderma, 2019, 352:181-184.
    [72] SHUAI WT, JAFFÉ PR. Anaerobic ammonium oxidation coupled to iron reduction in constructed wetland mesocosms[J]. Science of the Total Environment, 2019, 648:984-992.
    [73] LYONS TW, REINHARD CT, PLANAVSKY NJ. The rise of oxygen in Earth's early ocean and atmosphere[J]. Nature, 2014, 506(7488):307-315.
    [74] POULTON SW, BEKKER A, CUMMING VM, ZERKLE AL, CANFIELD DE, JOHNSTON DT. A 200-million-year delay in permanent atmospheric oxygenation[J]. Nature, 2021, 592(7853):232-236.
    [75] OHMOTO H, WATANABE Y, LASAGA AC, NARAOKA H, JOHNSON I, BRAINARD J, CHORNEY A. Oxygen, iron, and sulfur geochemical cycles on early Earth:Paradigms and contradictions[M]//Earth's Early Atmosphere and Surface Environment. Boulder:Geological Society of America, 2014.
    [76] STÜEKEN EE, BUICK R, GUY BM, KOEHLER MC. Isotopic evidence for biological nitrogen fixation by molybdenum-nitrogenase from 3.2 Gyr[J]. Nature, 2015, 520(7549):666-669.
    [77] STÜEKEN EE, KIPP MA, KOEHLER MC, BUICK R. The evolution of Earth's biogeochemical nitrogen cycle[J]. Earth-Science Reviews, 2016, 160:220-239.
    [78] LANEUVILLE M, KAMEYA M, CLEAVES HJ II. Earth without life:a systems model of a global abiotic nitrogen cycle[J]. Astrobiology, 2018, 18(7):897-914.
    [79] SUMMERS DP, BASA RCB, KHARE B, RODONI D. Abiotic nitrogen fixation on terrestrial planets:reduction of NO to ammonia by FeS[J]. Astrobiology, 2012, 12(2):107-114.
    [80] THOMAZO C, PAPINEAU D. Biogeochemical cycling of nitrogen on the early earth[J]. Elements, 2013, 9(5):345-351.
    [81] POULTON SW. Early phosphorus redigested[J]. Nature Geoscience, 2017, 10(2):75-76.
    [82] WALTON PH, DAVIES GJ, DIAZ DE, FRANCO-CAIRO JP. The histidine brace:nature's copper alternative to haem?[J]. FEBS Letters, 2023, 597(4):485-494.
    [83] ANBAR AD, KNOLL AH. Proterozoic Ocean chemistry and evolution:a bioinorganic bridge?[J]. Science, 2002, 297(5584):1137-1142.
    [84] CANFIELD DE, GLAZER AN, FALKOWSKI PG. The evolution and future of earth's nitrogen cycle[J]. Science, 2010, 330(6001):192-196.
    [85] LEPOT K. Signatures of early microbial life from the Archean (4 to 2.5 Ga) eon[J]. Earth-Science Reviews, 2020, 209:103296.
    [86] MOORE EK, JELEN BI, GIOVANNELLI D, RAANAN H, FALKOWSKI PG. Metal availability and the expanding network of microbial metabolisms in the Archaean eon[J]. Nature Geoscience, 2017, 10(9):629-636.
    [87] 李旭平, 陈妍蓉. 浅谈前寒武纪条带状铁建造的沉积-变质成矿过程[J]. 岩石学报, 2021, 37(1):253-268. LI XP, CHEN YR. A brief discussion on the depositional and metamorphic mineralization of Precambrian banded iron formations[J]. Acta Petrologica Sinica, 2021, 37(1):253-268(in Chinese).
    [88] 李延河, 侯可军, 万德芳, 张增杰, 乐国良. 前寒武纪条带状硅铁建造的形成机制与地球早期的大气和海洋[J]. 地质学报, 2010, 84(9):1359-1373. LI YH, HOU KJ, WAN DF, ZHANG ZJ, LE GL. Formation mechanism of Precambrian banded iron formation and atmosphere and ocean during early stage of the earth[J]. Acta Geologica Sinica, 2010, 84(9):1359-1373(in Chinese).
    [89] NIE NX, DAUPHAS N, GREENWOOD RC. Iron and oxygen isotope fractionation during iron UV photo-oxidation:implications for early Earth and Mars[J]. Earth and Planetary Science Letters, 2017, 458:179-191.
    [90] KAPPLER A, PASQUERO C, KONHAUSER KO, NEWMAN DK. Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria[J]. Geology, 2005, 33(11):865.
    [91] WU WF, SWANNER ED, KLEINHANNS IC, SCHOENBERG R, PAN YX, KAPPLER A. Fe isotope fractionation during Fe(II) oxidation by the marine photoferrotroph Rhodovulum iodosum in the presence of Si-implications for Precambrian iron formation deposition[J]. Geochimica et Cosmochimica Acta, 2017, 211:307-321.
    [92] RASMUSSEN B, MUHLING JR, KRAPEŽ B. Greenalite and its role in the genesis of early Precambrian iron formations-a review[J]. Earth-Science Reviews, 2021, 217:103613.
    [93] KONHAUSER KO, PLANAVSKY NJ, HARDISTY DS, ROBBINS LJ, WARCHOLA TJ, HAUGAARD R, LALONDE SV, PARTIN CA, OONK PBH, TSIKOS H, LYONS TW, BEKKER A, JOHNSON CM. Iron formations:a global record of Neoarchaean to Palaeoproterozoic environmental history[J]. Earth-Science Reviews, 2017, 172:140-177.
    [94] JOHNSON JE, MUHLING JR, COSMIDIS J, RASMUSSEN B, TEMPLETON AS. Low-Fe(III) greenalite was a primary mineral from neoarchean oceans[J]. Geophysical Research Letters, 2018, 45(7):3182-3192.
    [95] HALEVY I, ALESKER M, SCHUSTER EM, POPOVITZ-BIRO R, FELDMAN Y. A key role for green rust in the Precambrian Oceans and the genesis of iron formations[J]. Nature Geoscience, 2017, 10(2):135-139.
    [96] KLEIN C. Some Precambrian banded iron-formations (BIFs) from around the world:their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins[J]. American Mineralogist, 2005, 90(10):1473-1499.
    [97] ZHANG YM, HUANG LQ, JIANG HC, WU G. Hyperthermophilic anaerobic nitrate-dependent Fe(II) oxidization by Tibetan hot spring microbiota and the formation of Fe minerals[J]. Geomicrobiology Journal, 2019, 36(1):30-41.
    [98] YANG YF, JIN Z, QUAN X, ZHANG YB. Transformation of nitrogen and iron species during nitrogen removal from wastewater via feammox by adding ferrihydrite[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11):14394-14402.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

罗珺月,冯杰,罗阳,蒋宏忱,黄柳琴. 微生物厌氧氨氧化耦合铁还原的研究进展及展望[J]. 微生物学报, 2023, 63(6): 2031-2046

复制
分享
文章指标
  • 点击次数:489
  • 下载次数: 1350
  • HTML阅读次数: 2678
  • 引用次数: 0
历史
  • 收稿日期:2023-05-10
  • 最后修改日期:2023-05-30
  • 在线发布日期: 2023-06-06
  • 出版日期: 2023-06-04
文章二维码