微生物互营产甲烷过程中的种间电子传递
作者:
基金项目:

国家自然科学基金(31970105,32225003,42007217,42207144);中国博士后科学基金(2021TQ0212)


Interspecies electron transfer during microbial syntrophic methanogenesis
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [118]
  • |
  • 相似文献 [9]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    甲烷作为全球第二大温室气体,是典型的可再生清洁能源,也是碳循环中的重要物质组成。大气中约74%的甲烷由产甲烷古菌和其他微生物的互营产生,种间电子传递(interspecies electron transfer, IET)是微生物菌群降低热力学能垒、实现互营产甲烷的核心过程。IET可分为间接种间电子传递(mediated interspecies electron transfer, MIET)和直接种间电子传递(direct interspecies electron transfer, DIET)两种类型,其中MIET依赖氢气、甲酸等载体完成电子的远距离传输,而DIET则依赖导电菌毛、细胞色素c等膜蛋白,通过微生物的直接接触实现电子传递。本文将从IET的研究历程出发,从电子传递机制、微生物种类、生态多样性等方面对微生物互营产甲烷过程中的两种IET类型进行比较,最后对未来待探索的方向进行展望。本综述有助于加深对微生物互营产甲烷过程中IET的理解,为解决由甲烷引发的全球气候变暖等生态问题提供理论支撑。

    Abstract:

    As the second most abundant greenhouse gas in the world, methane is a typical renewable energy source and an important material component in the key link of the carbon cycle. About 74% of atmospheric methane is produced by syntrophy between methanogenic archaea and other microorganisms, and interspecies electron transfer (IET) is the core process of methanogenic microbial communities to overcome the thermodynamic energy barrier. IET can be sorted into mediated interspecies electron transfer (MIET) and direct interspecies electron transfer (DIET). During MIET, microorganisms rely on electron shuttles such as hydrogen and formate for long-distance electron transport. However, during DIET, microbial communities establish direct connections and transport electrons through electrically conductive pili, cytochrome c and other membrane-bound proteins. This review will start from the research history of IET and then compare MIET and DIET in terms of electron transfer mechanism, related microbial species, and ecological distribution. Finally, we will summarize the future research directions. This review is expected to help deepen the understanding of IET during microbial syntrophic methanogenesis and lay a theoretical basis for solving ecological problems such as global warming caused by methane.

    参考文献
    [1] WHALEN S. Biogeochemistry of methane exchange between natural wetlands and the atmosphere[J]. Environmental Engineering Science, 2005, 22(1):73-94.
    [2] KARAKURT I, AYDIN G, AYDINER K. Sources and mitigation of methane emissions by sectors:a critical review[J]. Renewable Energy, 2012, 39(1):40-48.
    [3] READY DS, SMITH P, CHRISTENSEN TR, JAMES RH, CLARK H. Methane and global environmental change[J]. Annual Review of Environment and Resources, 2018, 43(1):165-192.
    [4] KHARITONOV S, SEMENOV M, SABREKOV A, KOTSYURBENKO O, ZHELEZOYA A, SCHEGOLKOVA N. Microbial communities in methane cycle:modern molecular methods gain insights into their global ecology[J]. Environments, 2021, 8(2):1-30.
    [5] TOLLEFSON J. Scientists raise alarm over dangerously fast growth in atmospheric methane[J]. Nature, 2022, DOI:10.1038/d41586-022-00312-2.
    [6] ROSENTRETER JA, BORGES AV, DEEMER BR, HOLGERSON MA, LIU S, SONG C, MELACK J, RAYMOND PA, DUARTE CM, ALLEN GH. Half of global methane emissions come from highly variable aquatic ecosystem sources[J]. Nature Geoscience, 2021, 14(4):225-230.
    [7] LAN X, BASU S, SCHWIRTZKE S, BRUHWILER LMP, DLUGOKENCKY EJ, MICHEL SE, SHERWOOD OA, TANS PP, THONING K, ETIOPE G, ZHUANG Q, LIU L, OH Y, MILLER JB, PÉTRON G, VAUGHN BH, CRIPPA M. Improved constraints on global methane emissions and sinks using δ13C-CH4[J]. Global Biogeochemical Cycles, 2021, 35(6):e2021GB007000.
    [8] GARCIA JL, PATEL BK, OLLIVIER B. Taxonomic, phylogenetic, and ecological diversity of methanogenic archaea[J]. Anaerobe, 2000, 6(4):205-226.
    [9] HA PT, LINDEMANN SR, SHI L, DOHNALKOVA AC, FREDRICKSON JK, MADIGAN MT, BEYENAL H. Syntrophic anaerobic photosynthesis via direct interspecies electron transfer[J]. Nature Communications, 2017, 8(1):13924.
    [10] SOROKIN DY, MAKAROVA KS, ABBAS B, FERRER M, GOLYSGIN PN, GALINSKI EA, CIORDIA S, MENA MC, MERKEL AY, WOLF YI, van LOOSDRECHT MCM, KOONIN EV. Discovery of extremely halophilic, methyl-reducing euryarchaea provides insights into the evolutionary origin of methanogenesis[J]. Nature Microbiology, 2017, 2(8):17081.
    [11] ZHOU Z, ZHANG CJ, LIU PF, FU L, LASO-PÉREZ R, YANG L, BAI LP, LI J, YANG M, LIN JZ, WANG WD, WEGENER G, LI M, CHENG L. Non-syntrophic methanogenic hydrocarbon degradation by an archaeal species[J]. Nature, 2022, 601(7892):257-262.
    [12] SIEBER JR, MCINERNEY MJ, GUNSALUS RP. Genomic insights into syntrophy:the paradigm for anaerobic metabolic cooperation[J]. Annual Review of Microbiology, 2012, 66:429-452.
    [13] SCHINK B. Energetics of syntrophic cooperation in methanogenic degradation[J]. Microbiology and Molecular Biology Reviews, 1997, 61(2):262-280.
    [14] 刘鹏飞, 陆雅海. 水稻土中脂肪酸互营氧化的研究进展[J]. 微生物学通报, 2013, 40(1):109-122. LIU PF, LU YH. A review of syntrophic fatty acids oxidation in anoxic paddy soil[J]. Microbiology China, 2013, 40(1):109-122(in Chinese).
    [15] 方晓瑜, 李家宝, 瑞俊鹏. 产甲烷菌生化代谢途径研究进展[J]. 应用与环境生物学报, 2015, 21(1):1-9. FANG XY, Li JB, Rui JP, Li X. Research progress in biochemical pathways of methanogenesis[J]. Chinese Journal of Applied and Environmental Biology, 2015, 21(1):1-9(in Chinese).
    [16] 张杰, 陆雅海. 互营氧化产甲烷微生物种间电子传递研究进展[J]. 微生物学通报, 2015, 42(5):920-927. ZHANG J, LU YH. A review of interspecies electron transfer in syntrophic-methanogenic associations[J]. Microbiology China, 2015, 42(5):920-927(in Chinese).
    [17] STAMS AJ, PLUGGE CM. Electron transfer in syntrophic communities of anaerobic bacteria and archaea[J]. Nature Reviews Microbiology, 2009, 7(8):568-577.
    [18] MÜLLER N, WORM P, SCHINK B, STAMS AJ, PLUGGE CM. Syntrophic butyrate and propionate oxidation processes:from genomes to reaction mechanisms[J]. Environmental Microbiology Reports, 2010, 2(4):489-499.
    [19] LI X, MCINERNEY MJ, STAHL DA, KRUMHOLZ LR. Metabolism of H2 by Desulfovibrio alaskensis G20 during syntrophic growth on lactate[J]. Microbiology, 2011, 157(10):2912-2921.
    [20] GIEG LM, FOWLER SJ, BERDUGO-CLAVIJO C. Syntrophic biodegradation of hydrocarbon contaminants[J]. Current Opinion in Biotechnology, 2014, 27:21-29.
    [21] MCINERNEY MJ, SIEBER JR, GUNSALUS RP. Syntrophy in anaerobic global carbon cycles[J]. Current Opinion in Biotechnology, 2009, 20(6):623-632.
    [22] OMELIANSKI W. Über methanbildung in der natur bei biologischen prozessen[J]. Zentralblatt für Bakteriologie Parasitenkunde II, 1906, 15:673-687.
    [23] BRYANT MP, WOLIN EA, WOLIN MJ, WOLFE RS. Methanobacillus omelianskii, a symbiotic association of two species of bacteria[J]. Archiv für Mikrobiologie, 1967, 59(1):20-31.
    [24] THIELE JH, ZEIKUS JG. Control of interspecies electron flow during anaerobic digestion:significance of formate transfer versus hydrogen transfer during syntrophic methanogenesis in flocs[J]. Applied and Environmental Microbiology, 1988, 54(1):20-29.
    [25] KADEN J, S GALUSHKO A, SCHINK B. Cysteine-mediated electron transfer in syntrophic acetate oxidation by cocultures of Geobacter sulfurreducens and Wolinella succinogenes[J]. Archives of Microbiology, 2002, 178(1):53-58.
    [26] BIEBL H, PFENNIG N. Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria[J]. Archives of Microbiology, 1978, 117(1):9-16.
    [27] SMITH JA, NEVIN KP, LOVLEY DR. Syntrophic growth via quinone-mediated interspecies electron transfer[J]. Frontiers in Microbiology, 2015, 6:121.
    [28] HUANG L, LIU X, YE Y, CHEN M, ZHOU S. Evidence for the coexistence of direct and riboflavin-mediated interspecies electron transfer in Geobacter co-culture[J]. Environmental Microbiology, 2020, 22(1):243-254.
    [29] BECKMANN S, WELTE C, LI XM, OO YM, KROENINGER L, HEO Y, ZHANG MM, RIBEIRO D, LEE M, BHADBHADE M, MARJO CE, SEIDEL J, DEPPENMEIER U, MANEFIELD M. Novel phenazine crystals enable direct electron transfer to methanogens in anaerobic digestion by redox potential modulation[J]. Energy & Environmental Science, 2016, 9(2):644-655.
    [30] RICHTER K, SCHICKLBERGER M, GESCHER J. Dissimilatory reduction of extracellular electron acceptors in anaerobic respiration[J]. Applied and Environmental Microbiology, 2012, 78(4):913-921.
    [31] SUMMERS ZM, FOGARTY HE, LEANG C, FRANKS AE, MALVANKAR NS, LOVLEY DR. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria[J]. Science, 2010, 330(6009):1413-1415.
    [32] MORITA M, MALVANKAR NS, FRANKS AE, SUMMERS ZM, GILOTEAUX L, ROTARU AE, ROTARU C, LOVLEY DR. Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates[J]. mBio, 2011, 2(4):e00159-e00111.
    [33] LIU FH, ROTARU AE, SHRESTHA PM, MALVANKAR NS, NEVIN KP, LOVLEY DR. Promoting direct interspecies electron transfer with activated carbon[J]. Energy & Environmental Science, 2012, 5(10):8982-8989.
    [34] ROTARU AE, SHRESTHA PM, LIU FH, SHRESTHA M, SHRESTHA D, EMBREE M, ZENGLER K, WARDMAN C, NEVIN KP, LOVLEY DR. A new model for electron flow during anaerobic digestion:direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane[J]. Energy & Environmental Science, 2014, 7(1):408-415.
    [35] LOVLEY DR. Syntrophy goes electric:direct interspecies electron transfer[J]. Annual Review of Microbiology, 2017, 71:643-664.
    [36] 黄玲艳, 刘星, 周顺桂. 微生物直接种间电子传递:机制及应用[J]. 土壤学报, 2018(6):1313-1324. HUANG LY, LIU X, ZHOU SG. Direct interspecies electron transfer of microbes:mechanism and application[J]. Acta Pedologica Sinica, 2018(6):1313-1324(in Chinese).
    [37] 兰建英, 蒋海明, 李侠. 微生物种间直接电子传递研究进展[J]. 应用生态学报, 2021, 32(1):358-368. LAN JY, JIANG HM, LI X. Research advances in direct interspecies electron transfer within microbes[J]. Chinese Journal of Applied Ecology, 2021, 32(1):358-368(in Chinese).
    [38] NOZHEVNIKOVA AN, RUSSKOVA YI, LITTI YV, PARSHINA SN, ZHURAVLEVA EA, NIKITINA AA. Syntrophy and interspecies electron transfer in methanogenic microbial communities[J]. Microbiology, 2020, 89(2):129-147.
    [39] SHEN L, ZHAO Q, WU X, LI X, LI Q, WANG Y. Interspecies electron transfer in syntrophic methanogenic consortia:from cultures to bioreactors[J]. Renewable and Sustainable Energy Reviews, 2016, 54:1358-1367.
    [40] MEYER B, KUEHL J, DEUTSCHBAUER AM, PRICE MN, ARKIN AP, STAHL DA. Variation among Desulfovibrio species in electron transfer systems used for syntrophic growth[J]. Journal of Bacteriology, 2013, 195(5):990-1004.
    [41] WU WM, HICKEY RF, JAIN MK, ZEIKUS JG. Energetics and regulations of formate and hydrogen metabolism by Methanobacterium formicicum[J]. Archives of Microbiology, 1993, 159(1):57-65.
    [42] ODEN EE, KAPPLER A, BAUER I, JIANG J, PAUL A, STOESSER R, KONISHI H, XU H. Extracellular electron transfer through microbial reduction of solid-phase humic substances[J]. Nature Geoscience, 2010, 3(6):417-421.
    [43] 马金莲, 马晨, 汤佳, 周顺桂, 庄莉. 电子穿梭体介导的微生物胞外电子传递:机制及应用[J]. 化学进展, 2015(12):1833-1840. MA JL, MA C, TANG J, ZHOU SG, ZHUANG L. Mechanisms and applications of electron shuttle-mediated extracellular electron transfer[J]. Progress in Chemistry, 2015(12):1833-1840(in Chinese).
    [44] CAI G, ZHU G, ZHOU M, LV N, WANG R, LI C, LI J, PAN X. Syntrophic butyrate-oxidizing methanogenesis promoted by anthraquinone-2-sulfonate and cysteine:distinct tendencies towards the enrichment of methanogens and syntrophic fatty-acid oxidizing bacteria[J]. Bioresource Technology, 2021, 332:125074.
    [45] ZHUANG L, MA J, TANG J, TANG Z, ZHOU S. Cysteine-accelerated methanogenic propionate degradation in paddy soil enrichment[J]. Microbial Ecology, 2017, 73(4):916-924.
    [46] CERVANTES FJ, van der Velde S, LETTINGA G, FIELD JA. Competition between methanogenesis and quinone respiration for ecologically important substrates in anaerobic consortia[J]. FEMS Microbiology Ecology, 2000, 34(2):161-171.
    [47] ATILANO-CAMINO MM, LUÉVANO-MONTAÑO CD, GARCIA -GONZÁLEZ A, OLIVO-ALANIS DS, ÁlLVAREZ-VALENCIA LH, GARCÍA -REYES RB. Evaluation of dissolved and immobilized redox mediators on dark fermentation:driving to hydrogen or solventogenic pathway[J]. Bioresource Technology, 2020, 317:123981.
    [48] del ANGEL-ACOSTA YA, ALVAREZ LH, GARCIA-REYES RB, GARZA-GONZÁLEZ MT, Carrillo-Reyes J. Addition of electron shuttling compounds and different pH conditions for hydrogen production by a heat-treated sludge[J]. Biocatalysis and Agricultural Biotechnology, 2020, 23:101507.
    [49] LIU H, CHEN YG. Enhanced methane production from food waste using cysteine to increase biotransformation of l-monosaccharide, volatile fatty acids, and biohydrogen[J]. Environmental Science & Technology, 2018, 52(6):3777-3785.
    [50] REGURA G, MCCARTHY KD, MEHTA T, NICOLL JS, TUOMINEN MT, LOVLRY DR. Extracellular electron transfer via microbial nanowires[J]. Nature, 2005, 435(7045):1098-1101.
    [51] MALVANKAR NS, VARGAS M, NEVIN KP, FRANKS AE, LEANG C, KIM BC, INOUE K, MESTER T, COVALLA SF, JOHNSON JP, ROTELLO VM, TUOMINEN MT, LOVLEY DR. Tunable metallic-like conductivity in microbial nanowire networks[J]. Nature Nanotechnology, 2011, 6(9):573-579.
    [52] VARGAS M, MALVANKAR NS, TREMBLAY PL, LEANG C, SMITH JA, PATEL P, SNOEYENBOS-WEST O, Nevin KP, LOVLEY DR. Aromatic amino acids required for pili conductivity and long-range extracellular electron transport in Geobacter sulfurreducens[J]. MBio, 2013, 4(2):e00105-e00113.
    [53] UEKI T, NEVIN KP, ROTARU AE, WANG LY, WARD JE, WOODARD TL, LOVLEY DR. Geobacter strains expressing poorly conductive pili reveal constraints on direct interspecies electron transfer mechanisms[J]. MBio, 2018, 9(4):e01273-e01218.
    [54] ROTARU AE, SHRESTHA PM, LIU F, MARKOVAITE B, CHEN S, NEVIN KP, LOVLEY DR. Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri[J]. Applied and Environmental Microbiology, 2014, 80(15):4599-4605.
    [55] HOLMES DE, ZHOU J, UEKI T, WOODARD T, LOVLEY DR. Mechanisms for electron uptake by Methanosarcina acetivorans during direct interspecies electron transfer[J]. MBio, 2021, 12(5):e0234421.
    [56] LOVLEY DR, HOLMES DE. Protein nanowires:the electrification of the microbial world and maybe our own[J]. Journal of Bacteriology, 2020, 202(20):e00331-e00320.
    [57] LIU X, ZHUO S, RENSING C, ZHOU S. Syntrophic growth with direct interspecies electron transfer between pili-free Geobacter species[J]. The ISME Journal, 2018, 12(9):2142-2151.
    [58] UEKI T, WALKER DJF, NEVIN KP, WARD JE, WOODARD TL, NONNENMANN SS, LOVLEY DR. Pili expression in Geobacter sulfurreducens lacking the putative gene for the PilB Pilus assembly motor[J]. BioRxiv, 2021, DOI:10.1101/2021.07.10.451916.
    [59] ZHENG S, LIU F, WANG B, ZHANG Y, LOVLEY DR. Methanobacterium capable of direct interspecies electron transfer[J]. Environmental Science & Technology, 2020, 54(23):15347-15354.
    [60] HOLMES D, ZHOU J, SMITH JA, WANG C, LIU X, LOVLEY D. Different outer membrane c-type cytochromes are involved in direct interspecies electron transfer to Geobacter or Methanosarcina species[J]. MLife, 2022:1-15, DOI:10.1002/mlf2.12037.
    [61] HOLMES DE, ROTARU AE, UEKI T, SHRESTHA PM, FERRY JG, LOVLEY DR. Electron and proton flux for carbon dioxide reduction in Methanosarcina barkeri during direct interspecies electron transfer[J]. Frontiers in Microbiology, 2018, 9:3109.
    [62] YEE MO, ROTARU AE. Extracellular electron uptake in Methanosarcinales is independent of multiheme c-type cytochromes[J]. Scientific Reports, 2020, 10(1):372.
    [63] BARUA S, DHAR BR. Advances towards understanding and engineering direct interspecies electron transfer in anaerobic digestion[J]. Bioresource Technology, 2017, 244(pt 1):698-707.
    [64] ZHAO Z, ZHANG Y, WOODARD TL, NEVIN KP, LOVLEY DR. Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials[J]. Bioresource Technology, 2015, 191:140-145.
    [65] SUN WX, FU SF, ZHU R, WANG ZY, ZOU H, ZHENG Y. Improved anaerobic digestion efficiency of high-solid sewage sludge by enhanced direct interspecies electron transfer with activated carbon mediator[J]. Bioresource Technology, 2020, 313:123648.
    [66] CHEN S, ROTARU AE, SHRESTHA PM, MALVANKAR NS, LIU F, FAN W, NEVIN KP, LOVLEY DR. Promoting interspecies electron transfer with biochar[J]. Scientific Reports, 2014, 4:5019.
    [67] KATO S, HASHIMOTO K, WATANABE K. Methanogenesis facilitated by electric syntrophy via (semi) onductive iron-oxide minerals[J]. Environmental Microbiology, 2012, 14(7):1646-1654.
    [68] TANG J, ZHUANG L, MA J, TANG Z, YU Z, ZHOU S. Secondary mineralization of ferrihydrite affects microbial methanogenesis in Geobacter- Methanosarcina cocultures[J]. Applied and Environmental Microbiology, 2016, 82(19):5869-5877.
    [69] LIU F, ROTARU AE, SHRESTHA PM, MALVANKAR NS, NEVIN KP, LOVLEY DR. Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange[J]. Environmental Microbiology, 2015, 17(3):648-655.
    [70] HUANG L, LIU X, ZHANG Z, YE J, RENSING C, ZHOU S, NEALSON KH. Light-driven carbon dioxide reduction to methane by Methanosarcina barkeri in an electric syntrophic coculture[J]. The ISME Journal, 2022, 16(2):370-377.
    [71] PARK JH, KANG HJ, PARK KH, PARK HD. Direct interspecies electron transfer via conductive materials:a perspective for anaerobic digestion applications[J]. Bioresource Technology, 2018, 254:300-311.
    [72] MA W, LI H, ZHANG W, SHEN C, WANG L, LI Y, LI Q, WANG Y. TiO2 nanoparticles accelerate methanogenesis in mangrove wetlands sediment[J]. Science of the Total Environment, 2020, 713:136602.
    [73] BRYANT MP, CAMPBELL LL, REDDY CA, CRABILL MR. Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria[J]. Applied and Environmental Microbiology, 1977, 33(5):1162-1169.
    [74] BOONE DR, JOHNSON RL, LIU Y. Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and its implications in the measurement of Km for H2 or formate uptake[J]. Applied and Environmental Microbiology, 1989, 55(7):1735-1741.
    [75] PLUGGE CM, BALK M, STAMS AJM. Desulfotomaculum thermobenzoicum subsp. thermosyntrophicum subsp. nov. a thermophilic, syntrophic, propionate-oxidizing, spore-forming bacterium[J]. International Journal of Systematic and Evolutionary Microbiology, 2002, 52(2):391-399.
    [76] ZHENG S, ZHANG H, LI Y, ZHANG H, WANG O, ZHANG J, LIU F. Co-occurrence of Methanosarcina mazei and Geobacteraceae in an iron (III)-reducing enrichment culture[J]. Frontiers in Microbiology, 2015, 6:941.
    [77] YEE MO, SNOEYENBOS-WEST OL, THAMDRUP B, OTTOSEN LDM, ROTARU AE. Extracellular electron uptake by two Methanosarcina species[J]. Frontiers in Energy Research, 2019, 7:29.
    [78] ZHENG S, LI M, LIU Y, LIU F. Desulfovibrio feeding Methanobacterium with electrons in conductive methanogenic aggregates from coastal zones[J]. Water Research, 2021, 202:117490.
    [79] SIEBER JR, LE HM, MCINERNEY MJ. The importance of hydrogen and formate transfer for syntrophic fatty, aromatic and alicyclic metabolism[J]. Environmental Microbiology, 2014, 16(1):177-188.
    [80] WALKER DJF, NEVIN KP, HOLMES DE, ROTARU AE, WARD JE, WOODARD TL, ZHU J, UEKI T, NONNENMANN SS, MCINERNEY MJ, LOVLEY DR. Syntrophus conductive pili demonstrate that common hydrogen-donating syntrophs can have a direct electron transfer option[J]. The ISME Journal, 2020, 14(3):837-846.
    [81] SCHÜTZ H, SEILER W, CONRAD R. Processes involved in formation and emission of methane in rice paddies[J]. Biogeochemistry, 1989, 7(1):33-53.
    [82] ABBASI T, ABBASI SA. Formation and impact of granules in fostering clean energy production and wastewater treatment in upflow anaerobic sludge blanket (UASB) reactors[J]. Renewable and Sustainable Energy Reviews, 2012, 16(3):1696-1708.
    [83] YUAN J, DING W, LIU D, XIANG J, LIN Y. Methane production potential and methanogenic archaea community dynamics along the Spartina alterniflora invasion chronosequence in a coastal salt marsh[J]. Applied Microbiology and Biotechnology, 2014, 98(4):1817-1829.
    [84] LIU Y, NI BJ, GANIGUÉ R, WERNER U, SHARMA KR, YUAN Z. Sulfide and methane production in sewer sediments[J]. Water Research, 2015, 70:350-359.
    [85] ROLAND FAE, DARCHAMBEAU F, MORANA C, BOUILLON S, BORGES AV. Emission and oxidation of methane in a meromictic, eutrophic and temperate lake (Dendre, Belgium)[J]. Chemosphere, 2017, 168:756-764.
    [86] DENG Y, LIU Y, DUMONT M, CONRAD R. Salinity affects the composition of the aerobic methanotroph community in alkaline lake sediments from the Tibetan Plateau[J]. Microbial Ecology, 2017, 73(1):101-110.
    [87] ZHANG CJ, PAN J, LIU Y, DUAN CH, LI M. Genomic and transcriptomic insights into methanogenesis potential of novel methanogens from mangrove sediments[J]. Microbiome, 2020, 8(1):94.
    [88] LIU Y, WHITMAN WB. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea[J]. Annals of the New York Academy of Sciences, 2008, 1125(1):171-189.
    [89] FONDEVILA M, DEHORITY BA. Interactions between Fibrobacter succinogenes, Prevotella ruminicola, and Ruminococcus flavefaciens in the digestion of cellulose from forages[J]. Journal of Animal Science, 1996, 74(3):678-684.
    [90] DEHORITY BA, TIRABASSO PA. Antibiosis between ruminal bacteria and ruminal fungi[J]. Applied and Environmental Microbiology, 2000, 66(7):2921-2927.
    [91] LECLERC M, DELGÈNES JP, GODON JJ. Diversity of the archaeal community in 44 anaerobic digesters as determined by single strand conformation polymorphism analysis and 16S rDNA sequencing[J]. Environmental Microbiology, 2004, 6(8):809-819.
    [92] DIMARCO AA, BOBIK TA, WOLFE RS. Unusual coenzymes of methanogenesis[J]. Annual review of biochemistry, 1990, 59(1):355-394.
    [93] HENDERSON G, COX F, GANESH S, JONKER A, YOUNG W, Global Rumen Census Collaborators, JANSSEN PH. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range[J]. Scientific Reports, 2015, 5:14567.
    [94] LAN W, YAMG C. Ruminal methane production:associated microorganisms and the potential of applying hydrogen-utilizing bacteria for mitigation[J]. The Science of the Total Environment, 2019, 654:1270-1283.
    [95] CORD-RUWISCH R, SEITZ HJ, CONRAD R. The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor[J]. Archives of Microbiology, 1988, 149(4):350-357.
    [96] van KESSEL JAS, RUSSELL JB. The effect of pH on ruminal methanogenesis[J]. FEMS Microbiology Ecology, 1996, 20(4):205-210.
    [97] BOCCAZZI P, PATTERSON J. Using hydrogen-limited anaerobic continuous culture to isolate lowhydrogen threshold ruminal acetogenic bacteria[J]. Food and Analytical Bacteriology, 2011, 1:33-44.
    [98] le VAN TD, ROBINSON JA, RALPH J, GREENING RC, SMOLENSKI WJ, LEEDLE JA, SCHAEFER DM. Assessment of reductive acetogenesis with indigenous ruminal bacterium populations and Acetitomaculum ruminis[J]. Applied and Environmental Microbiology, 1998, 64(9):3429-3436.
    [99] LI Z, LIU N, CAO Y, JIN C, LI F, CAI C, YAO J. Effects of fumaric acid supplementation on methane production and rumen fermentation in goats fed diets varying in forage and concentrate particle size[J]. Journal of Animal Science and Biotechnology, 2018, 9:21.
    [100] PHILIPPEAU C, LETTAT A, MARTIN C, SILBERBERG M, MORGAVI DP, FERLAY A, BERGER C, NOZIÈRE P. Effects of bacterial direct-fed microbials on ruminal characteristics, methane emission, and milk fatty acid composition in cows fed high-or low-starch diets[J]. Journal of Dairy Science, 2017, 100(4):2637-2650.
    [101] 傅霖, 辛明秀. 产甲烷菌的生态多样性及工业应用. 应用与环境生物学报[J]. 2009, 15(4):574-578. FU L, XIN MX. Ecological diversity and industrial application of methanogens[J]. Chinese Journal of Applied and Environmental Biology, 2009, 15(4):574-578(in Chinese).
    [102] STRAPOC D, PICARDAL FW, TURICH C, SCHAPERDOTH I, MACALADY JL, LIPP JS, LIN YS, ERTEFAI TF, SCHUBOTZ F, HINRICHS KU, MASTALERZ M, SCHIMMELMANN A. Methane-producing microbial community in a coal bed of the Illinois Basin[J]. Applied and Environmental Microbiology, 2008, 74(8):2424-2432.
    [103] TIAN HQ, LU CQ, CIAIS P, MICHALAK AM, CANADELL JG, SAIKAWA E, HUNTZINGER DN, GURNEY KR, SITCH S, ZHANG BW, YANG J, BOUSQUET P, BRUHWILER L, CHEN GS, DLUGOKENCKY E, FRIEDLINGSTEIN P, MELILLO J, PAN SF, POULTER B, PRINN R, et al. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere[J]. Nature, 2016, 531(7593):225-228.
    [104] CONRAD R. The global methane cycle:recent advances in understanding the microbial processes involved[J]. Environmental Microbiology Reports, 2009, 1(5):285-292.
    [105] HORI T, MÜLLER A, IGARASHI Y, CONRAD R, FRIEDRICH MW. Identification of iron-reducing microorganisms in anoxic rice paddy soil by 13C-acetate probing[J]. The ISME Journal, 2010, 4(2):267-278.
    [106] HOLMES DE, SHRESTHA PM, WALKER DJF, DANG Y, NEVINE KP, WOODARD TL, LOVLEY DR. Metatranscriptomic evidence for direct interspecies electron transfer between Geobacter and Methanothrix species in methanogenic rice paddy soils[J]. Applied and Environmental Microbiology, 2017, 83(9):e00223-e00217.
    [107] CONRAD R, KLOSE M, NOLL M, KEMNITZ D, BODELIER PLE. Soil type links microbial colonization of rice roots to methane emission[J]. Global Change Biology, 2008, 14(3):657-669.
    [108] ALPANA S, VISHWAKARMA P, ADHYA TK, INUBUSHI K, DUBEY SK. Molecular ecological perspective of methanogenic archaeal community in rice agroecosystem[J]. The Science of the Total Environment, 2017, 596/597:136-146.
    [109] FENG D, XIA A, HUANG Y, ZHU X, ZHU X, LIAO Q. Effects of carbon cloth on anaerobic digestion of high concentration organic wastewater under various mixing conditions[J]. Journal of Hazardous Materials, 2022, 423(pt a):127100.
    [110] YANG Y, TSUKAHARA K, YAGISHITA T, SAWAYAMA S. Performance of a fixed-bed reactor packed with carbon felt during anaerobic digestion of cellulose[J]. Bioresource Technology, 2004, 94(2):197-201.
    [111] WANG R, LI C, LV N, PAN X, CAI G, NING J, ZHU G. Deeper insights into effect of activated carbon and nano-zero-valent iron addition on acidogenesis and whole anaerobic digestion[J]. Bioresource Technology, 2021, 324:124671.
    [112] YANG Y, ZHANG Y, LI Z, ZHAO Z, QUAN X, ZHAO Z. Adding granular activated carbon into anaerobic sludge digestion to promote methane production and sludge decomposition[J]. Journal of Cleaner Production, 2017, 149:1101-1108.
    [113] LEI Y, SUN D, DANG Y, FENG X, HUO D, LIU C, ZHENG K, HOLMES DE. Metagenomic analysis reveals that activated carbon aids anaerobic digestion of raw incineration leachate by promoting direct interspecies electron transfer[J]. Water Research, 2019, 161:570-580.
    [114] CRUZ VIGGI C, ROSSETTI S, FAZI S, PAIANO P, MAJONE M, AULENTA F. Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation[J]. Environmental Science & Technology, 2014, 48(13):7536-7543.
    [115] CHEN Q, LIU C, LIU X, SUN D, LI P, QIU B, DANG Y, KARPINSKI NA, SMITH JA, HOLMES DE. Magnetite enhances anaerobic digestion of high salinity organic wastewater[J]. Environmental Research, 2020, 189:109884.
    [116] SUN Z, SUN W, TONG C, ZENG C, YU X, MOU X. China' oastal wetlands:conservation history, implementation efforts, existing issues and strategies for future improvement[J]. Environment International, 2015, 79:25-41.
    [117] STORCK T, VIRDIS B, BASTONE DJ. Modelling extracellular limitations for mediated versus direct interspecies electron transfer[J]. The ISME Journal, 2016, 10(3):621-631.
    [118] SHRESTHA PM, ROTARU AE. Plugging in or going wireless:strategies for interspecies electron transfer[J]. Frontiers in Microbiology, 2014, 5:237.
    引证文献
引用本文

张瀚云,周瑾洁,张翠景,李猛. 微生物互营产甲烷过程中的种间电子传递[J]. 微生物学报, 2023, 63(6): 2047-2065

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-08-03
  • 最后修改日期:2022-12-22
  • 在线发布日期: 2023-06-06
  • 出版日期: 2023-06-04
文章二维码