石灰土演替过程中颗粒态有机质和矿物结合态有机质的微生物群落特征
作者:
基金项目:

国家自然科学基金(42172341);广西科技基地和人才专项(桂科AD20297091)


Characteristics of soil microbial communities in particulate organic matter and mineral-associated organic matter along calcareous succession process
Author:
  • XU Jiao

    XU Jiao

    Key Laboratory of Karst Ecosystem and Treatment of Rocky Desertification, Ministry of Natural Resources, Key Laboratory of Karst Dynamics, Ministry of Natural Resources & Guangxi, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, Guangxi, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Qiang

    LI Qiang

    Key Laboratory of Karst Ecosystem and Treatment of Rocky Desertification, Ministry of Natural Resources, Key Laboratory of Karst Dynamics, Ministry of Natural Resources & Guangxi, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, Guangxi, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [60]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    碳酸盐岩经风化作用并在地形、植被、气候、时间及生物等因素的影响下逐渐演替出黑色石灰土、棕色石灰土、黄色石灰土和红色石灰土。【目的】研究不同演替阶段石灰土颗粒态有机质(particulate organic matter, POM)和矿物结合态有机质(mineral-associated organic matter, MAOM)的微生物群落特征,为岩溶土壤有机质稳定机制研究提供理论依据。【方法】以广西弄岗国家级自然保护区的黑色石灰土、棕色石灰土、黄色石灰土和红色石灰土为研究对象,运用湿筛法将土壤有机质(soil organic matter, SOM)分为POM和MAOM,分析其理化性质以及微生物群落特征。【结果】石灰土演替过程中POM和MAOM的有机碳、总氮、交换性钙含量均呈下降趋势,且MAOM的C/N均大于POM,POM的C/P均大于MAOM。细菌α多样性在黑色石灰土POM和MAOM中最高,且四类石灰土MAOM的真菌多样性比POM要高。AcidobacteriaProteobacteriaAscomycota均为石灰土演替过程中POM和MAOM的优势菌门。总磷是影响石灰土演替过程中POM和MAOM细菌群落变化的关键因子,溶解性有机碳和土壤有机碳分别是影响石灰土演替过程中POM和MAOM真菌群落变化的关键因子。POM和MAOM中黑色石灰土的微生物可能发生了生态位分化,随着石灰土演替细菌与真菌更倾向于协作关系。【结论】岩溶土壤演替过程中POM和MAOM的养分及微生物多样性降低,POM可能是微生物养分的主要来源,MAOM更有利于碳的长期稳定积累。本研究可为岩溶土壤演替过程中微生物在有机质形成过程中的作用提供理论依据。

    Abstract:

    After undergoing weathering and being influenced by topography, vegetation, climate, time and biology, the carbonate rocks gradually evolved into black calcareous soil, brown calcareous soil, yellow calcareous soil and red calcareous soil. [Objective] This study aims to investigate the microbial community characteristics of particulate organic matter (POM) and mineral-associated organic matter (MAOM) in calcareous soil at different succession stages, providing a theoretical basis for the study of organic matter stability mechanism in karst soil. [Methods] Black calcareous soil, brown calcareous soil, yellow calcareous soil, and red calcareous soil from the Nonggang Nature Reserve in Guangxi were chosen as the research objects, and soil organic matter (SOM) was divided into POM and MAOM by using wet screening method. The soil physicochemical properties and soil microbial community characteristics were analyzed. [Results] During the succession process of calcareous soil, the soil organic carbon, total nitrogen, and exchangeable calcium contents of POM and MAOM showed a decreasing trend, and the C/N of MAOM was greater than that of POM, whereas the C/P of POM was greater than that of MAOM. The bacterial diversity was higher in black calcareous soil of POM and MAOM, and the diversity of bacteria and fungi in the four type calcareous soil of MAOM was higher than that in POM. Acidobacteria, Proteobacteria, and Ascomycota were the dominant phyla in POM and MAOM along the succession process of calcareous soil. Total phosphorus was a key factor affecting the changes of bacterial communities in POM and MAOM during calcareous soil succession, while dissolved organic carbon and soil organic carbon were key factors affecting the changes of fungal communities in POM and MAOM during calcareous soil succession, respectively. The microorganisms from black calcareous soil in POM and MAOM may have undergone ecological niche differentiation, and bacteria and fungi tend to cooperate more closely along calcareous soil succession. [Conclusion] During the succession process of calcareous soil, the nutrients and microbial diversity of POM and MAOM decrease. POM may be the main source for microbial nutrients, and MAOM is more conducive to be the long-term stable accumulation of carbon. This study can provide a theoretical basis for the role of microorganisms in the formation of organic matter during the succession process of karst soil.

    参考文献
    [1] 袁道先, 蔡桂鸿. 岩溶环境学[M]. 重庆:重庆出版社, 1988:1-332. YUAN DX, CAI GH. Karst Environmental Science[M]. Chongqing:Chongqing Press, 1988:1-332(in Chinese).
    [2] 蒋忠诚, 蒋小珍, 雷明堂. 运用GIS和溶蚀试验数据估算中国岩溶区大气CO2的汇[J]. 中国岩溶, 2000, 19(3):212-217. JIANG ZC, JIANG XZ, LEI MT. Estimation of atmospheric CO2 sink of Karst areas in China based on GIS and limestone tablet loss data[J]. Carsologica Sinica, 2000, 19(3):212-217(in Chinese).
    [3] 曹建华, 袁道先, 潘根兴. 岩溶生态系统中的土壤[J]. 地球科学进展, 2003, 18(1):37-44. CAO JH, YUAN DX, PAN GX. Some soil features in Karst ecosystem[J]. Advance in Earth Sciences, 2003, 18(1):37-44(in Chinese).
    [4] 邬奇峰, 谢国雄, 王京文, 章明奎. 浙西3类石灰岩发育土壤有机碳和团聚体稳定性的研究[J]. 土壤通报, 2018, 49(3):567-574. WU QF, XIE GX, WANG JW, ZHANG MK. The stability of organic carbon and aggregates of three limestone soils in the western Zhejiang[J]. Chinese Journal of Soil Science, 2018, 49(3):567-574(in Chinese).
    [5] 张治伟, 许娟娟, 严焕德, 程永毅, 龙晓泳. 海拔与岩性变异对石灰岩发育土壤黏土矿物组成的影响[J]. 土壤学报, 2017, 54(2):535-542. ZHANG ZW, XU JJ, YAN HD, CHENG YY, LONG XY. Effects of elevation and lithology on clay mineral composition of soils derived from limestone[J]. Acta Pedologica Sinica, 2017, 54(2):535-542(in Chinese).
    [6] XUN W, HUANG T, ZHAO J, RAN W, WANG B, SHEN Q, ZHANG R. Environmental conditions rather than microbial inoculum composition determine the bacterial composition, microbial biomass and enzymatic activity of reconstructed soil microbial communities[J]. Soil Biology and Biochemistry, 2015, 90:10-18.
    [7] 朱美娜, 梁月明, 刘畅, 靳振江, 李强. 岩溶石灰土微生物丰度的影响因素及其指示意义[J]. 生态环境学报, 2018, 27(3):484-490. ZHU MN, LIANG YM, LIU C, JIN ZJ, LI Q. Influential factors and indicative significance of microbial abundance in Karst limestone soil[J]. Ecology and Environmental Sciences, 2018, 27(3):484-490(in Chinese).
    [8] XUE L, REN HD, LI S, LENG XH, YAO XH. Soil bacterial community structure and Co-occurrence pattern during vegetation restoration in Karst rocky desertification area[J]. Frontiers in Microbiology, 2017, 8:2377.
    [9] 严嘉慧, 周岐海, 胡林安, 钟菊新, 李强. 不同演替阶段岩溶石灰土可培养细菌的群落特征[J]. 微生物学报, 2021, 61(6):1666-1680. YAN JH, ZHOU QH, Hu LA, ZNONG JX, LI Q. Community characteristics of culturable bacteria in calcareous soil at different succession stages[J]. Acta Microbiologica Sinica, 2021, 61(6):1666-1680(in Chinese).
    [10] LAVALLEE JM, SOONG JL, COTRUFO MF. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century[J]. Global Change Biology, 2020, 26(1):261-273.
    [11] ROCCI KS, LAVALLEE JM, STEWART CE, COTRUFO MF. Soil organic carbon response to global environmental change depends on its distribution between mineral-associated and particulate organic matter:a meta-analysis[J]. Science of the Total Environment, 2021, 793:148569.
    [12] 郑聚锋, 陈硕桐. 土壤有机质与土壤固碳[J]. 科学, 2021, 73(6):13-17. ZHENG JF, CHEN ST. Soil organic matter and soil carbon sequestration[J]. Science, 2021, 73(6):13-17(in Chinese).
    [13] JILING A, KEILUWEIT M, GUTKNECHT JLM, GRANDY AS. Priming mechanisms providing plants and microbes access to mineral-associated organic matter[J]. Soil Biology and Biochemistry, 2021, 158:108265.
    [14] 王斌, 黄俞淞, 李先琨, 向悟生, 丁涛, 黄甫昭, 陆树华, 韩文衡, 文淑均, 何兰军. 弄岗北热带喀斯特季节性雨林15 ha监测样地的树种组成与空间分布[J]. 生物多样性, 2014, 22(2):141-156. WANG B, HUANG YS, LI XK, XIANG WS, DING T, HUANG FZ, LU SH, HAN WH, WEN SJ, HE LJ. Species composition and spatial distribution of a 15 ha northern tropical karst seasonal rain forest dynamics study plot in Nonggang, Guangxi, Southern China[J]. Biodiversity Science, 2014, 22(2):141-156(in Chinese).
    [15] DAVINIC M, FULTZ LM, ACOSTA-MARTINEZ V, CALDERÓN FJ, COX SB, DOWD SE, ALLEN VG, ZAK JC, MOORE-KUCERA J. Pyrosequencing and mid-infrared spectroscopy reveal distinct aggregate stratification of soil bacterial communities and organic matter composition[J]. Soil Biology and Biochemistry, 2012, 46:63-72.
    [16] 鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社, 2000:146-195. LU RK. Methods of Soil Agrochemical Analysis[M]. China Agriculture Scientech Press, 2000:146-195(in Chinese).
    [17] 李阳兵, 王世杰, 李瑞玲. 岩溶生态系统的土壤[J]. 生态环境, 2004(3):434-438. LI YB, WANG SJ, LI RL. Some soil features of Karst ecosystem[J]. Ecology and Environment, 2004(3):434-438(in Chinese).
    [18] YAN JH, LI Q, HU L, WANG J, ZHOU Q, ZHONG J. Response of microbial communities and their metabolic functions to calcareous succession process[J]. Science of the Total Environment, 2022, 825:154020.
    [19] LUO XL, BAI XY, TAN Q, RAN C, CHEN H, XI HP, CHEN F, WU LH, LI CJ, ZHANG SR, ZHONG X, TIAN S. Particulate organic carbon exports from the terrestrial biosphere controlled by erosion[J]. CATENA, 2022, 209:105815.
    [20] ROWLET MC, GRAND S, VERRECCHIA ÉP. Calcium-mediated stabilisation of soil organic carbon[J]. Biogeochemistry, 2018, 137(1/2):27-49.
    [21] STARK S, MÄNNISTÖ MK, ESKELINEN A. Nutrient availability and pH jointly constrain microbial extracellular enzyme activities in nutrient-poor tundra soils[J]. Plant and Soil, 2014, 383(1):373-385.
    [22] 刘美英, 李文龙, 赵晶, 许学慧. 采煤沉陷地复垦土壤团聚体碳氮磷化学计量特征[J]. 煤炭科学技术, 2022, 50(12):271-277. LIU MY, LI WL, ZHAO J, XU XH. Carbon, nitrogen and phosphorus nutrients and stoichiometric characteristics of re-claimed soil aggregate in coal mining subsidence land[J]. Coal Science and Technology, 2022, 50(12):271-277(in Chinese).
    [23] 陶冶, 张元明, 周晓兵. 伊犁野果林浅层土壤养分生态化学计量特征及其影响因素[J]. 应用生态学报, 2016, 27(7):2239-2248. TAO Y, ZHANG YM, ZHOU XB. Ecological stoichiometry of surface soil nutrient and its influencing factors in the wild fruit forest in Yili region, Xinjiang, China[J]. Chinese Journal of Applied Ecology, 2016, 27(7):2239-2248(in Chinese).
    [24] 黄芬, 吴夏, 杨慧, 张春来, 曹建华. 桂林毛村地下河流域岩溶关键带碳循环研究[J]. 广西科学, 2018, 25(5):515-523. HUANG F, WU X, YANG H, ZHANG CL, CAO JH. Study on carbon cycle of Karst critical zone in Maocun subterranean river basin of Guilin[J]. Guangxi Sciences, 2018, 25(5):515-523(in Chinese).
    [25] 潘复静, 靳振江, 梁月明, 李强, 李臻. 喀斯特地区不同类型石灰土的生态化学计量特征[J]. 桂林理工大学学报, 2018, 38(4):738-743. PAN FJ, JIN ZJ, LIANG YM, LI Q, LI Z. Ecological stoichiometric characteristics of different calcareous soils in Karst regions[J]. Journal of Guilin University of Technology, 2018, 38(4):738-743(in Chinese).
    [26] 李玮, 郑子成, 李廷轩, 刘敏英. 不同植茶年限土壤团聚体及其有机碳分布特征[J]. 生态学报, 2014, 34(21):6326-6336. LI W, ZHENG ZC, LI TX, LIU MY. Distribution characteristics of soil aggregates and its organic carbon in different tea plantation age[J]. Acta Ecologica Sinica, 2014, 34(21):6326-6336(in Chinese).
    [27] 曹良元, 张磊, 蒋先军, 苏海锋, 石杰, 李楠. 长期垄作免耕对不同大小土壤团聚体中几种氮素形态分布的影响[J]. 植物营养与肥料学报, 2009, 15(4):824-830. CAO LY, ZHANG L, JIANG XJ, SU HF, SHI J, LI N. Effects of long-term ridge tillage on distributions of different nitrogen forms of soft water stable aggregates[J]. Plant Nutrition and Fertilizer Science, 2009, 15(4):824-830(in Chinese).
    [28] Guan S, An N, Zong N, He YT, Shi PL, Zhang JJ, He NP. Climate warming impacts on soil organic carbon fractions and aggregate stability in a Tibetan alpine meadow[J]. Soil Biology and Biochemistry, 2018, 116:224-236.
    [29] 李周园, 叶小洲, 王少鹏. 生态系统稳定性及其与生物多样性的关系[J]. 植物生态学报, 2021, 45(10):1127-1139. LI ZY, YE XZ, WANG SP. Ecosystem stability and its relationship with biodiversity[J]. Chinese Journal of Plant Ecology, 2021, 45(10):1127-1139(in Chinese).
    [30] WANG YZ, JIAO PY, GUO W, DU DJ, HU YL, TAN X, LIU X. Changes in bulk and rhizosphere soil microbial diversity and composition along an age gradient of Chinese fir (Cunninghamia lanceolate) plantations in subtropical China[J]. Frontiers in Microbiology, 2022, 12:777862.
    [31] KAWAHARA A, AN GH, MIYAKAWA S, SONODA J, EZAWA T. Nestedness in arbuscular mycorrhizal fungal communities along soil pH gradients in early primary succession:acid-tolerant fungi are pH generalists[J]. PLoS One, 2016, 11(10):e0165035.
    [32] ZHANG KL, CHEN L, LI YF, BROOKES PC, XU JM, LUO Y. Interactive effects of soil pH and substrate quality on microbial utilization[J]. European Journal of Soil Biology, 2020, 96:103151.
    [33] BACH EM, WILLIAMS RJ, HARGREAVES SK, YANG F, HOFMOCKEL KS. Greatest soil microbial diversity found in micro-habitats[J]. Soil Biology and Biochemistry, 2018, 118:217-226.
    [34] RABBI SMF, DANIEL H, LOCKWOOD PV, MACDONALD C, PEREG L, TIGHE M, WILSON BR, YOUNG IM. Physical soil architectural traits are functionally linked to carbon decomposition and bacterial diversity[J]. Scientific Reports, 2016, 6:33012.
    [35] WRIGHT DA, KILLHAM K, GLOVER LA, PROSSER JI. The effect of location in soil on protozoal grazing of a genetically modified bacterial inoculum[J]. Geoderma, 1993, 56(1/2/3/4):633-640.
    [36] LI Q, SONG A, YANG H, MÜLLER WEG. Impact of rocky desertification control on soil bacterial community in Karst graben basin, southwestern China[J]. Frontiers in Microbiology, 2021, 12:636405.
    [37] TRIVEDI P, DELGADO-BAQUERIZO M, JEFFRIES TC, TRIVEDI C, ANDERSON IC, LAI KT, MCNEE M, FLOWER K, PAL SINGH B, MINKEY D, SINGH BK. Soil aggregation and associated microbial communities modify the impact of agricultural management on carbon content[J]. Environmental Microbiology, 2017, 19(8):3070-3086.
    [38] 赵美纯, 李鑫, 王月, 赵汉丞, 赵冬雪, 王盼盼, 孙广玉. 东北黑土旱田改稻田对土壤团聚体微生物群落功能多样性的影响[J]. 核农学报, 2020, 34(12):2831-2838. ZHAO MC, LI X, WANG Y, ZHAO HC, ZHAO DX, WANG PP, SUN GY. Changes in microbial community functional diversity in soil aggregate of black soil turned from upland into paddy tillage in northeast China[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(12):2831-2838(in Chinese).
    [39] 王光华, 刘俊杰, 于镇华, 王新珍, 金剑, 刘晓冰. 土壤酸杆菌门细菌生态学研究进展[J]. 生物技术通报, 2016, 32(2):14-20. WANG GH, LIU JJ, YU ZH, WANG XZ, JIN J, LIU XB. Research progress of acidobacteria ecology in soils[J]. Biotechnology Bulletin, 2016, 32(2):14-20(in Chinese).
    [40] DENEF K, ZOTARELLI L, BODDEY RM, SIX J. Microaggregate-associated carbon as a diagnostic fraction for management-induced changes in soil organic carbon in two Oxisols[J]. Soil Biology and Biochemistry, 2007, 39(5):1165-1172.
    [41] EILERS KG, LAUBER CL, KNIGHT R, FIERER N. Shifts in bacterial community structure associated with inputs of low molecular weight carbon compounds to soil[J]. Soil Biology and Biochemistry, 2010, 42(6):896-903.
    [42] 周军波, 靳振江, 肖筱怡, 冷蒙, 王晓彤, 潘复静. 岩溶区稻田土壤真菌群落结构及功能类群特征[J]. 环境科学, 2021, 42(8):4005-4014. ZHOU JB, JIN ZJ, XIAO XY, LENG M, WANG XT, PAN FJ. Investigation of soil fungal communities and functionalities within Karst paddy fields[J]. Environmental Science, 2021, 42(8):4005-4014(in Chinese).
    [43] BALDRIAN P, KOLAŘÍK M, ŠTURSOVÁ M, KOPECKÝ J, VALÁŠKOVÁ V, VĚTROVSKÝ T, ŽIFČÁKOVÁ L, ŠNAJDR J, RÍDL J, VLČEK Č, VOŘÍŠKOVÁ J. Active and total microbial communities in forest soil are largely different and highly stratified during decomposition[J]. The ISME Journal, 2012, 6(2):248-258.
    [44] BARBERÁN A, BATES ST, CASAMAYOR EO, FIERER N. Using network analysis to explore co-occurrence patterns in soil microbial communities[J]. The ISME Journal, 2012, 6(2):343-351.
    [45] GAO Q, GAO SH, BATES C, ZENG YF, LEI JS, SU H, DONG Q, QIN ZY, ZHAO JS, ZHANG QT, NING DL, HUANG Y, ZHOU JZ, YANG YF. The microbial network property as a bio-indicator of antibiotic transmission in the environment[J]. Science of the Total Environment, 2021, 758:143712.
    [46] FAUST K, RAES J. Microbial interactions:from networks to models[J]. Nature Reviews Microbiology, 2012, 10(8):538-550.
    [47] WU BB, WANG P, DEVLIN AT, XIAO SS, SHU W, ZHANG H, DING MJ. Influence of soil and water conservation measures on soil microbial communities in a Citrus orchard of southeast China[J]. Microorganisms, 2021, 9(2):319.
    [48] XUE L, REN H, BRODRIBB TJ, WANG J, LI S. Long term effects of management practice intensification on soil microbial community structure and co-occurrence network in a non-timber plantation[J]. Forest Ecology and Management, 2020, 459:117805.
    [49] WAGG C, SCHLAEPPI K, BANERJEE S, KURAMAE EE, van der HEIJDEN MGA. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning[J]. Nature Communications, 2019, 10:4841.
    [50] CHENG M, AN SS. Responses of soil nitrogen, phosphorous and organic matter to vegetation succession on the Loess Plateau of China[J]. Journal of Arid Land, 2015, 7(2):216-223.
    [51] CAO N, CHEN XP, CUI ZL, ZHANG FS. Change in soil available phosphorus in relation to the phosphorus budget in China[J]. Nutrient Cycling in Agroecosystems, 2012, 94(2):161-170.
    [52] 王鹏, 孙剑秋, 臧威, 蒋本庆, 王登宇, 李铁. 磷细菌研究进展[J]. 河南农业科学, 2008, 37(9):5-9. WANG P, SUN JQ, ZANG W, JIANG BQ, WANG DY, LI T. Research progress of phosphorus bacteria[J]. Journal of Henan Agricultural Sciences, 2008, 37(9):5-9(in Chinese).
    [53] 曾汇文, 李倩如, 王雅士, 兰文波, 蒙艳斌. 土壤解磷细菌解磷机制及其促生作用综述[J]. 湘南学院学报, 2022, 43(2):12-20. ZENG HW, LI QR, WANG YS, LAN WB, MENG YB. Review of phosphorus-resolving mechanism and growth-promoting function of soil phosphorus- solubilizing bacteria[J]. Journal of Xiangnan University (Medical Sciences), 2022, 43(2):12-20(in Chinese).
    [54] KIM DU, LEE H, KIM H, KIM SG, KA JO. Dongia soli sp. nov., isolated from soil from Dokdo, Korea[J]. Antonie Van Leeuwenhoek, 2016, 109(10):1397-1402.
    [55] 曹建华, 潘根兴, 袁道先, 姜光辉. 岩溶地区土壤溶解有机碳的季节动态及环境效应[J]. 生态环境, 2005(2):224-229. CAO JH, PAN GX, YUAN DX, JIANG G. Seasonal changes of dissolved organic carbon in soil:its environmental implication in Karst area[J]. Ecology and Environmnet, 2005(2):224-229(in Chinese).
    [56] ZHANG Y, XIE Z, YU Z, WANG Y, LIU C, WANG G, WU J, JIN J, LIU X. Impact of surface soil manuring on particulate carbon fractions in relevant to nutrient stoichiometry in a Mollisol profile[J]. Soil and Tillage Research, 2021, 207:104859.
    [57] YANG Y, DOU YX, HUANG YM, AN SS. Links between soil fungal diversity and plant and soil properties on the loess plateau[J]. Frontiers in Microbiology, 2017, 8:2198.
    [58] SCHIMEL JP, SCHAEFFER SM. Microbial control over carbon cycling in soil[J]. Frontiers in Microbiology, 2012, 3:348.
    [59] LI F, CHEN L, REDMILE-GORDON M, ZHANG JB, ZHANG CZ, NING Q, LI W. Mortierella elongata's roles in organic agriculture and crop growth promotion in a mineral soil[J]. Land Degradation & Development, 2018, 29(6):1642-1651.
    [60] FRANZLUEBBERS AJ, ARSHAD MA. Soil microbial biomass and mineralizable carbon of water-stable aggregates[J]. Soil Science Society of America Journal, 1997, 61(4):1090-1097.
    引证文献
引用本文

胥娇,李强. 石灰土演替过程中颗粒态有机质和矿物结合态有机质的微生物群落特征[J]. 微生物学报, 2023, 63(6): 2153-2172

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-04-29
  • 最后修改日期:2023-05-29
  • 在线发布日期: 2023-06-06
  • 出版日期: 2023-06-04
文章二维码