二氧化碳生物转化制甲烷技术研究进展
作者:
基金项目:

国家重点研发计划(2022YFC2105900)


Research progress in bio-conversion of carbon dioxide to methane
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [58]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    二氧化碳减量化与转化是当前业界关注及着手解决的重要问题,将二氧化碳作为资源转化为甲烷,有利于环境与社会的可持续发展。本文在分析二氧化碳转化为甲烷技术的基础上,重点介绍了国内外二氧化碳生物转化的研究与进展;总结了二氧化碳生物转化途径及其影响因素,分析了氢营养型、甲基营养型生物转化甲烷机理和生物转化能量来源;探讨了不同产甲烷菌微生物电合成产甲烷和氢气研究进展,总结了微生物电合成法、光合作用法和厌氧消化法等二氧化碳生物转化技术在反应器设计、电极材料选择、工艺条件优化及试验结果评估等方面取得的进展及存在的问题。重点就微生物电合成法的未来研究提出了增强微生物活性、提升氢气利用率、加快高效电极开发、提高能量效率、加强工业废气试验研究和强化光能转化等研究重点和发展方向,同时加强计算机模拟等交叉学科协同创新是促进二氧化碳生物转化技术进步的新方向。

    Abstract:

    Carbon dioxide reduction and utilization is a key issue attracting increasing attention at present. Using carbon dioxide as the resource for the production of methane facilitates the environmental and social sustainability. By reviewing the studies of different technologies for the bio-conversion of carbon dioxide to methane, we summarized the pathways and influencing factors of carbon dioxide bio-conversion and the mechanisms and energy sources of the bio-conversion conducted by methylotrophic methanogens and hydrogenotrophic methanogens. Furthermore, we reviewed the studies about microbial electrosynthesis by different methanogens. We elaborated on the progress and existing problems in the reactor design, electrode material selection, parameter optimization, and result evaluation of carbon dioxide bio-conversion technologies, including microbial electrosynthesis, photosynthetic biohybrid systems, and anaerobic digestion. In particular, we put forward that enhancing microbial activity, improving hydrogen utilization efficiency, accelerating efficient electrode development, increasing energy efficiency, strengthening research on waste gas-stream, and reinforcing photo-electricity conversion can be the priorities and directions of the future research for improving microbial electrosynthesis. Moreover, this review deduced that strengthening interdisciplinary collaborative innovation, such as computer-based simulation, would be a new direction to promote the advances in carbon dioxide bio-conversion technology.

    参考文献
    [1] RUSMAN NAA, DAHARI M. A review on the current progress of metal hydrides material for solid-state hydrogen storage applications[J]. International Journal of Hydrogen Energy, 2016, 41(28):12108-12126.
    [2] WANG Q, LUO JZ, ZHONG ZY, BORGNA A. CO2 capture by solid adsorbents and their applications:current status and new trends[J]. Energy & Environmental Science, 2011, 4(1):42-55.
    [3] HUGHES TP, BAIRD AH, BELLWOOD DR, CARD M, CONNOLLY SR, FOLKE C, GROSBERG R, HOEGH-GULDBERG O, JACKSON JBC, KLEYPAS J, LOUGH JM, MARSHALL P, NYSTRÖM M, PALUMBI SR, PANDOLFI JM, ROSEN B, ROUGHGARDEN J. Climate change, human impacts, and the resilience of coral reefs[J]. Science, 2003, 301(5635):929-933.
    [4] GRANITSIOTIS G. Methanation of carbon dioxide:experimental research of separation enhanced methanation of CO2[D]. Delft, the Netherlands:Master's Thesis of Delft University of Technology, 2017.
    [5] 任杰, 曾安平. 基于二氧化碳的生物制造:从基础研究到工业应用的挑战[J]. 合成生物学, 2021, 2(6):854-862. REN J, ZENG AP. CO2 based biomanufacturing:from basic research to industrial application[J]. Synthetic Biology Journal, 2021, 2(6):854-862(in Chinese).
    [6] 赵毅, 钱新凤, 张自丽. 二氧化碳资源化技术分析及应用前景[J]. 科学技术与工程, 2014, 14(16):175-183. ZHAO Y, QIAN XF, ZHANG ZL. Technical analysis and application prospect on resource utilization of carbon dioxide[J]. Science Technology and Engineering, 2014, 14(16):175-183(in Chinese).
    [7] 陶映初, 吴少晖, 张曦. CO2电化学还原研究进展[J]. 化学通报, 2001, 64(5):272-277. TAO YC, WU SH, ZHANG X. Advances in electrochemical reduction of carbon dioxide[J]. Chemistry, 2001, 64(5):272-277(in Chinese).
    [8] PRAKASH GKS, VIVA FA, OLAH GA. Electrochemical reduction of CO2 over Sn-Nafion® coated electrode for a fuel-cell-like device[J]. Journal of Power Sources, 2013, 223:68-73.
    [9] 张溪文, 程旭东. 光催化还原二氧化碳研究进展[J]. 化学工业与工程, 2015, 32(3):24-29. ZHANG XW, CHENG XD. Research progress of photocatalytic reduction of carbon dioxide[J]. Chemical Industry and Engineering, 2015, 32(3):24-29(in Chinese).
    [10] WANG XL, YANG M, ZHU LJ, ZHU XN, WANG SR. CO2 methanation over Ni/Mg@MCM-41 prepared by in situ synthesis method[J]. Journal of Fuel Chemistry and Technology, 2020, 48(4):456-465.
    [11] LI H, LIAO JC. Biological conversion of carbon dioxide to photosynthetic fuels and electrofuels[J]. Energy & Environmental Science, 2013, 6(10):2892-2899.
    [12] WEI L, WANG Q, XIN Y, LU Y, XU J. Enhancing photosynthetic biomass productivity of industrial oleaginous microalgae by overexpression of RuBisCO activase[J]. Algal Research, 2017, 27:366-375.
    [13] ZHAO TT, FENG GH, CHEN W, SONG YF, DONG X, LI GH, ZHANG HJ, WEI W. Artificial bioconversion of carbon dioxide[J]. Chinese Journal of Catalysis, 2019, 40(10):1421-1437.
    [14] LIU ZH, WANG K, CHEN Y, TAN TW, NIELSEN J. Third-generation biorefineries as the means to produce fuels and chemicals from CO2[J]. Nature Catalysis, 2020, 3(3):274-288.
    [15] FRONTERA P, MACARIO A, FERRARO M, ANTONUCCI P. Supported catalysts for CO2 methanation:a review[J]. Catalysts, 2017, 7(2):59.
    [16] FAN WK, TAHIR M. Recent trends in developments of active metals and heterogenous materials for catalytic CO2 hydrogenation to renewable methane:a review[J]. Journal of Environmental Chemical Engineering, 2021, 9(4):105460.
    [17] AZIZ MAA, JALIL AA, TRIWAHYONO S, SAAD MWA. CO2 methanation over Ni-promoted mesostructured silica nanoparticles:influence of Ni loading and water vapor on activity and response surface methodology studies[J]. Chemical Engineering Journal, 2015, 260:757-764.
    [18] YOUNAS M, LOONG KONG L, BASHIR MJK, NADEEM H, SHEHZAD A, SETHUPATHI S. Recent advancements, fundamental challenges, and opportunities in catalytic methanation of CO2[J]. Energy & Fuels, 2016, 30(11):8815-8831.
    [19] ZHU LJ, YIN S, YIN QQ, WANG HX, WANG SR. Biochar:a new promising catalyst support using methanation as a probe reaction[J]. Energy Science & Engineering, 2015, 3(2):126-134.
    [20] GAO JJ, LIU Q, GU FN, LIU B, ZHONG ZY, SU FB. Recent advances in methanation catalysts for the production of synthetic natural gas[J]. RSC Advances, 2015, 5(29):22759-22776.
    [21] ZULYS A, YULIA F, MUHADZIB N, NASRUDDIN. Biological metal-organic frameworks (bio-MOFs) for CO2 capture[J]. Industrial & Engineering Chemistry Research, 2021, 60(1):37-51.
    [22] THAUER RK, KASTER AK, SEEDORF H, BUCKEL W, HEDDERICH R. Methanogenic archaea:ecologically relevant differences in energy conservation[J]. Nature Reviews Microbiology, 2008, 6(8):579-591.
    [23] COSTA KC LEIGH JA. Metabolic versatility in methanogens[J]. Current Opinion in Biotechnology, 2014, 29:70-75.
    [24] SU L, AJO-FRANKLIN CM. Reaching full potential:bioelectrochemical systems for storing renewable energy in chemical bonds[J]. Current Opinion in Biotechnology, 2019, 57:66-72.
    [25] KURODA M, WATANABE T. CO2 reduction to methane and acetate using a bio-electro reactor with immobilized methanogens and homoacetogens on electrodes[J]. Energy Conversion and Management, 1995, 36(6/7/8/9):787-790.
    [26] NAZINA TN, SHESTAKOVA NM, GRIGOR'YAN AA, MIKHAILOVA EM, TOUROVA TP, POLTARAUS AB, FENG C, NI FT, BELYAEV SS. Phylogenetic diversity and activity of anaerobic microorganisms of high-temperature horizons of the Dagang oil field (P. R. China)[J]. Microbiology, 2006, 75(1):55-65.
    [27] MOCHIMARU H, YOSHIOKA H, TAMAKI H, NAKAMURA K, KANEKO N, SAKATA S, IMACHI H, SEKIGUCHI Y, UCHIYAMA H, KAMAGATA Y. Microbial diversity and methanogenic potential in a high temperature natural gas field in Japan[J]. Extremophiles, 2007, 11(3):453-461.
    [28] TANAKA A, SAKAMOTO Y, MAYUMI D, KANO Y, HIGASHINO H, SUZUMURA M, SAGISAKA M, NISHI YJ, NAKAO S. Schematic feasibility study of bio-CCS technology[J]. Energy Procedia, 2014, 63:8062-8068.
    [29] YANG GC, ZHOU L, MBADINGA S, GU JD, MU BZ. Bioconversion pathway of CO2 in the presence of ethanol by methanogenic enrichments from production water of a high-temperature petroleum reservoir[J]. Energies, 2019, 12(5):918.
    [30] XIONG Y, HOU Z, XIE H, ZHAO J, TAN X, LUO J. Microbial-mediated CO2 methanation and renewable natural gas storage in depleted petroleum reservoirs:a review of biogeochemical mechanism and perspective[J]. Gondwana Research, 2022. https://doi.org/10.1016/j.gr.2022.04.017.
    [31] MAYER F, MÜLLER V. Adaptations of anaerobic Archaea to life under extreme energy limitation[J]. FEMS Microbiology Reviews, 2014, 38(3):449-472.
    [32] MAYER F, ENZMANN F, LOPEZ AM, HOLTMANN D. Performance of different methanogenic species for the microbial electrosynthesis of methane from carbon dioxide[J]. Bioresource Technology, 2019, 289:121706.
    [33] 前田治男. CO2をエネルキー資源に電気化学的微生物利用メタン生産技術の可能性[J]. Journal of the Japanese Association for Petroleum Technology, 2018, 83(2):143-147. HARUO M. Possibility of methane production technology using electrochemical microorganisms using CO2 as an energy resource[J]. Journal of the Japanese Association for Petroleum Technology, 2018, 83(2):143-147(in Japanese).
    [34] LAGUILLAUMIE L, RAFRAFI Y, MOYA-LECLAIR E, DELAGNES D, DUBOS S, SPÉRANDIO M, PAUL E, DUMAS C. Stability of ex situ biological methanation of H2/CO2 with a mixed microbial culture in a pilot scale bubble column reactor[J]. Bioresource Technology, 2022, 354:127180.
    [35] XU H, GIWA AS, WANG CP, CHANG FM, YUAN Q, WANG KJ, HOLMES DE. Impact of antibiotics pretreatment on bioelectrochemical CH4 production[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(10):8579-8586.
    [36] TREMBLAY PL, ZHANG T. Electrifying microbes for the production of chemicals[J]. Frontiers in Microbiology, 2015, 6:201.
    [37] ENZMANN F, MAYER F, STÖCKL M, MANGOLD KM, HOMMEL R, HOLTMANN D. Transferring bioelectrochemical processes from H-cells to a scalable bubble column reactor[J]. Chemical Engineering Science, 2019, 193(16):133-143.
    [38] ENZMANN F, HOLTMANN D. Rational scale-up of a methane producing bioelectrochemical reactor to 50 L pilot scale[J]. Chemical Engineering Science, 2019, 207:1148-1158.
    [39] ELECTROCHAEA. TECHNOLOGY. https://www.electrochaea.com/technology/AccessedDate:2023/03/26.
    [40] van EERTEN-JANSEN MCAA, TER HEIJNE A, BUISMAN CJN, HAMELERS HVM. Microbial electrolysis cells for production of methane from CO2:long-term performance and perspectives[J]. International Journal of Energy Research, 2012, 36(6):809-819.
    [41] GHARBI R, VIDALES A, OMANOVIC S, TARTAKOVSKY B. Mathematical model of a microbial electrosynthesis cell for the conversion of carbon dioxide into methane and acetate[J]. Journal of CO2 Utilization, 2022, 59:101956.
    [42] NAKASUGI Y, HIMENO M, KOBAYASHI H, IKARASHI M, MAEDA H, SATO K. Experimental and mathematical analyses of bio-electrochemical conversion of carbon dioxide to methane[J]. Energy Procedia, 2017, 114:7133-7140.
    [43] ARYAL N, AMMAM F, PATIL SA, PANT D. An overview of cathode materials for microbial electrosynthesis of chemicals from carbon dioxide[J]. Green Chemistry, 2017, 19(24):5748-5760.
    [44] SHANG GY, CUI K, CAI W, HU X, JIN P, GUO K. A 20 L electrochemical continuous stirred-tank reactor for high rate microbial electrosynthesis of methane from CO2[J]. Chemical Engineering Journal, 2023, 451:138898.
    [45] XIA RX, CHENG J, LI H, YANG X, REN XY, DONG HQ, CHEN Z, ZHOU XY, LIN RC, ZHOU JH. Dual metal active sites and an enhanced electric field boosting CO2 reduction to CH4 in an electromethanogenesis system[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(9):2890-2902.
    [46] ZHEN G, LU X, KOBAYASHI T, KUMAR G, XU K. Promoted electromethanosynthesis in a two-chamber microbial electrolysis cells (MECs) containing a hybrid biocathode covered with graphite felt (GF)[J]. Chemical Engineering Journal, 2016, 284:1146-1155.
    [47] HARA M, ONAKA Y, KOBAYASHI H, FU Q, KAWAGUCHI H, VILCAEZ J, SATO K. Mechanism of electromethanogenic reduction of CO2 by a thermophilic methanogen[J]. Energy Procedia, 2013, 37:7021-7028.
    [48] DING L, CHENG J, LU H, YUE L, ZHOU J, CEN K. Three-stage gaseous biofuel production combining dark hydrogen, photo hydrogen, and methane fermentation using wet Arthrospira platensis cultivated under high CO2 and sodium stress[J]. Energy Conversion and Management, 2017, 148:394-404.
    [49] SHIVARAJU HP, ANILKUMAR KM, YASHAS SR, HARINI R, SHAHMORADI B, MALEKI A, MCKAY G. Facile synthesis of Mn-Ce/N-TiO2 composite for CO2 hydrogenation into methane and intensifying methane yield in biomethanation[J]. Biofuels, Bioproducts and Biorefineing, 2021, 15(1):189-201.
    [50] GHIMIRE A, FRUNZO L, PIROZZI F, TRABLY E, ESCUDIE R, LENS PNL, ESPOSITO G. A review on dark fermentative biohydrogen production from organic biomass:process parameters and use of by-products[J]. Applied Energy, 2015, 144:73-95.
    [51] DEMIREL B, SCHERER P. The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane:a review[J]. Reviews in Environmental Science and Bio/Technology, 2008, 7(2):173-190.
    [52] DAGLIOGLU ST, KARABEY B, OZDEMIR G, AZBAR N. CO2 Utilization via a novel anaerobic bioprocess configuration with simulated gas mixture and real stack gas samples[J]. Environmental Technology, 2019, 40(6):742-748.
    [53] DANIELS L, BELAY N, RAJAGOPAL BS, WEIMER PJ. Bacterial methanogenesis and growth from CO2 with elemental iron as the sole source of electrons[J]. Science, 1987, 237(4814):509-511.
    [54] LEI M, ZHOU L, MBADINGA S, GU J, MU B. Accelerated CO2 reduction to methane for energy by zero valent iron in oil reservoir production waters[J]. Energy, 2018, 147:663-671.
    [55] 牟伯中, 周蕾, 刘金峰, 杨世忠, 白杨.一种促进二氧化碳生物转化为甲烷的方法.中国:CN108517337A[P]. 2018-09-11.
    [56] XU H, WANG K, ZHANG X, GONG H, XIA Y, HOLMES D. Application of in situ H2-assisted biogas upgrading in high-rate anaerobic wastewater treatment[J]. Bioresource Technology, 2020, 299:122598.
    [57] 徐恒, 吴长江, 张新妙, 于荣珍.一种潮汐式二氧化碳生物甲烷化装置. 中国:CN216192231U[P]. 2022-01-28.
    [58] CHITSAZ A, KHALILARYA S, MOJAVER P. Supercritical CO2 utilization in a CO2 zero emission novel system for bio-synthetic natural gas, power and freshwater productions[J]. Journal of CO2 Utilization, 2022, 59:101947.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

姜冠伦,张新妙,栾金义. 二氧化碳生物转化制甲烷技术研究进展[J]. 微生物学报, 2023, 63(6): 2245-2260

复制
分享
文章指标
  • 点击次数:464
  • 下载次数: 1890
  • HTML阅读次数: 2135
  • 引用次数: 0
历史
  • 收稿日期:2023-02-01
  • 最后修改日期:2023-05-23
  • 在线发布日期: 2023-06-06
  • 出版日期: 2023-06-04
文章二维码