CD630_27900基因缺失显著降低艰难拟梭菌自溶速率、毒力及对酸和抗生素的耐受性
作者:
基金项目:

国家自然科学基金(32170134,32160015,U1812403);贵州省省级科技计划([2020]1Z067,[2019]1441);贵州医科大学优秀青年人才计划((2022)101)


CD630_27900 gene deletion significantly reduces autolysis rate and virulence of Clostridioides difficile and the tolerance to acids and antibiotics
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [32]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    艰难拟梭菌(Clostridioidesdifficile) CD630_27900基因位于slpA-cwp66基因座上,CD630_27900基因属于假定的Lmbe家族的酶,但基因功能尚未明确。【目的】本研究通过构建艰难拟梭菌CD630_27900基因敲除菌株,比较野生型菌株(CD630)与突变株表型差异,探讨CD630_27900基因对艰难拟梭菌感染的影响。【方法】用非等长同源臂偶联等位交换(allele-coupled exchange, ACE)构建CD630_27900基因缺失菌株与回补菌株。比较它们在生长曲线、自溶素(cwp19,Acd)基因表达、细胞毒力、主要毒素基因表达、抗生素及pH敏感性差异,以研究CD630_27900基因的功能。【结果】成功构建∆CD630_27900突变菌株和::CD630_27900回补菌株。菌株∆CD630_27900在衰亡期自溶速率显著低于菌株CD630,::CD630_27900自溶速率恢复。实时荧光定量聚合酶链反应(real-time fluorescence quantitative polymerase chain reaction,RT-qPCR)结果显示,缺失CD630_27900基因,自溶素cwp19Acd基因表达量降低,::CD630_27900自溶素基因表达增强。相较于CD630,∆CD630_27900菌株细胞毒力、毒素基因tcdAtcdB表达量降低。相较于CD630,∆CD630_27900对氨苄青霉素、甲硝唑、阿莫西林、万古霉素、诺氟沙星、头孢西丁、卡那霉素更加敏感,::CD630_27900对以上抗生素敏感性恢复。此外,∆CD630_27900对酸比CD630敏感,对碱敏感性未发生变化。::CD630_27900对酸敏感性恢复至野生型水平。【结论】敲除CD630_27900基因,艰难拟梭菌自溶速率变慢、自溶素cwp19Acd基因表达量降低、细胞毒力、毒素基因tcdAtcdB降低,说明CD630_27900基因影响菌株自溶以及毒力释放。菌株∆CD630_27900对临床上常见的抗生素及酸性环境更加敏感,且这些变化均可通过基因回补恢复。提示该基因可作为联合抗生素治疗艰难梭菌感染(Clostridioides difficile infection, CDI)的潜在靶点。

    Abstract:

    The function of CD630_27900 gene at the slpA-cwp66 locus of Clostridioides difficile is still unclear. The encoded enzyme is putatively regarded as a member of Lmbe family. [Objective] To construct CD630_27900 gene-deleted mutant, compare the phenotypes of the wild-type strain (CD630) and the mutant, and discuss the effect of CD630_27900 gene on the infection of C. difficile. [Methods] The CD630_27900-deleted mutant and the complementary strain were constructed by allele-coupled exchange (ACE). The growth curves, expression of autolysin genes (cwp19, Acd), cytotoxicity, expression of major toxin genes, and sensitivity to antibiotics and pH were compared among the three strains. [Results] The mutant strain ∆CD630_27900 and the complementary strain ::CD630_27900 were successfully constructed. At the decline phase, the autolysis rate of ∆CD630_27900 was significantly lower than that of CD630, and the autolysis rate of ::CD630_27900 was restored. The real-time fluorescence quantitative polymerase chain reaction(RT-qPCR) results showed that the expression of cwp19 and Acdwas decreased in ∆CD630_27900 and increased in ::CD630_27900 compared with that in the wild type. The cytotoxicity assay showed that the cytotoxicity of ∆CD630_27900 was significantly reduced compared with that of CD630 and the complementary strain, which is consistent with reduced expression levels of thetoxin genes tcdA and tcdB. Furthermore, ∆CD630_27900 showed significantly stronger sensitivity to ampicillin, metronidazole, amoxicillin, vancomycin, norfloxacin, cefoxitin, and kanamycin than CD630 and ::CD630_27900. Strain ∆CD630_27900 was more sensitive to acid than strain CD630 and ::CD630_27900. However, the sensitivity of ∆CD630_27900 to the alkaline environment was comparable to that of CD630. [Conclusion] Upon the deletion of CD630_27900 gene, C. difficile demonstrated slow autolysis, low expression of autolys in genes cwp19 and Acd, low cytotoxicity, and low expression of toxin genes tcdA and tcdB. Thus, CD630_27900 may influence the autolysis and virulence of C. difficile. ∆CD630_27900 was more sensitive to the antibiotics commonly used in clinical settings than the wild type. These changes were reversed after the complementation of the gene. Thus, CD630_27900 can be a potential target in the treatment of C. difficile infection (CDI) with antibiotics.

    参考文献
    [1] HE M, MIYAJIMA F, ROBERTS P, ELLISON L, PICKARD DJ, MARTIN MJ, CONNOR TR, HARRIS SR, FAIRLEY D, BAMFORD KB, D'ARC S, BRAZIER J, BROWN D, COIA JE, DOUCE G, GERDING D, KIM HJ, KOH TH, KATO H, SENOH M, et al. Emergence and global spread of epidemic healthcare-associated Clostridiumdifficile[J]. Nature Genetics, 2013, 45(1):109-113.
    [2] BARTLETT JG, GERDING DN. Clinical recognition and diagnosis of Clostridium difficile infection[J]. Clinical Infectious Diseases:an Official Publication of the Infectious Diseases Society of America, 2008, 46(suppl 1):S12-S18.
    [3] KNIGHT DR, ELLIOTT B, CHANG BJ, PERKINS TT, RILEY TV. Diversity and evolution in the genome of Clostridium difficile[J]. Clinical Microbiology Reviews, 2015, 28(3):721-741.
    [4] di BELLA S, ASCENZI P, SIARAKAS S, PETROSILLO N, di MASI A. Clostridium difficile toxins A and B:insights into pathogenic properties and extraintestinal effects[J]. Toxins, 2016, 8(5):134.
    [5] SPIGAGLIA P, MASTRANTONIO P, BARBANTI F. Antibiotic resistances of Clostridium difficile[J]. Advances in Experimental Medicine and Biology, 2018, 1050:137-159.
    [6] LESSA FC, MU Y, BAMBERG WM, BELDAVS ZG, DUMYATI GK, DUNN JR, FARLEY MM, HOLZBAUER SM, MEEK JI, PHIPPS EC, WILSON LE, WINSTON LG, COHEN JA, LIMBAGO BM, FRIDKIN SK, GERDING DN, McDONALD LC. Burden of Clostridium difficile infection in the United States[J]. The New England Journal of Medicine, 2015, 372(9):825-834.
    [7] LI H, LI WG, ZHANG WZ, YU SB, LIU ZJ, ZHANG X, WU Y, LU JX. Antibiotic resistance of clinical isolates of Clostridioides difficile in China and its association with geographical regions and patient age[J]. Anaerobe, 2019, 60:102094.
    [8] XU QM, CHEN YB, GU SL, LV T, ZHENG BW, SHEN P, QUAN JZ, FANG YH, LI LJ. Hospital-acquired Clostridium difficile infection in Mainland China:a seven-year (2009-2016) retrospective study in a large university hospital[J]. Scientific Reports, 2017, 7:9645.
    [9] SÁRA M, SLEYTR UB. S-layer proteins[J]. Journal of Bacteriology, 2000, 182(4):859-868.
    [10] KIRK JA, GEBHART D, BUCKLEY AM, LOK S, SCHOLL D, DOUCE GR, GOVONI GR, FAGAN RP. New class of precision antimicrobials redefines role of Clostridium difficile S-layer in virulence and viability[J]. Science Translational Medicine, 2017, 9(406):eaah6813.
    [11] FAGAN RP, JANOIR C, COLLIGNON A, MASTRANTONIO P, POXTON IR, FAIRWEATHER NF. A proposed nomenclature for cell wall proteins of Clostridium difficile[J]. Journal of Medical Microbiology, 2011, 60(Pt 8):1225-1228.
    [12] FAGAN RP, ALBESA-JOVÉ D, QAZI O, SVERGUN DI, BROWN KA, FAIRWEATHER NF. Structural insights into the molecular organization of the S-layer from Clostridium difficile[J]. Molecular Microbiology, 2009, 71(5):1308-1322.
    [13] DINGLE KE, DIDELOT X, ANSARI MA, EYRE DW, VAUGHAN A, GRIFFITHS D, IP CLC, BATTY EM, GOLUBCHIK T, BOWDEN R, JOLLEY KA, HOOD DW, FAWLEY WN, WALKER AS, PETO TE, WILCOX MH, CROOK DW. Recombinational switching of the Clostridium difficile S-layer and a novel glycosylation gene cluster revealed by large-scale whole-genome sequencing[J]. The Journal of Infectious Diseases, 2013, 207(4):675-686.
    [14] BRADSHAW WJ, KIRBY JM, ROBERTS AK, SHONE CC, Cwp2 from Clostridium difficile exhibits an extended three domain fold and cell adhesion in vitro[J]. The FEBS Journal, 2017, 284(17):2886-2898.
    [15] ZHOU QS, RAO FQ, CHEN ZH, CHENG YM, ZHANG QF, ZHANG J, GUAN ZZ, HE Y, YU WF, CUI GZ, QI XL, HONG W. The cwp66 gene affects cell adhesion, stress tolerance, and antibiotic resistance in Clostridioides difficile[J]. Microbiology Spectrum, 2022, 10(2):e0270421.
    [16] CALABI E, WARD S, WREN B, PAXTON T, PANICO M, MORRIS H, DELL A, DOUGAN G, FAIRWEATHER N. Molecular characterization of the surface layer proteins from Clostridium difficile[J]. Molecular Microbiology, 2001, 40(5):1187-1199.
    [17] BRADSHAW WJ, ROBERTS AK, SHONE CC, The structure of the S-layer of Clostridium difficile[J]. Journal of Cell Communication and Signaling, 2018, 12(1):319-331.
    [18] COULLON H, RIFFLET A, WHEELER R, JANOIR C, BONECA IG, CANDELA T. Peptidoglycan analysis reveals that synergistic deacetylase activity in vegetative Clostridium difficile impacts the host response[J]. Journal of Biological Chemistry, 2020, 295(49):16785-16796.
    [19] VIARS S, VALENTINE J, HERNICK M. Structure and function of the LmbE-like superfamily[J]. Biomolecules, 2014, 4(2):527-545.
    [20] HEAP JT, PENNINGTON OJ, CARTMAN ST, MINTON NP.A modular system for Clostridium shuttle plasmids[J]. Journal of Microbiological Methods, 2009, 78(1):79-85.
    [21] 鲍江舰, 杨君仪, 邵瑞瑞, 张婷, 廖健, 程玉梅, 官志忠, 齐晓岚, 陈峥宏, 洪伟, 崔古贞. fliL基因显著影响艰难拟梭菌运动功能及产孢能力[J]. 生物工程学报, 2023, 39(4):1578-1595. BAO JJ, YANG JY, SHAO RR, ZHANG T, LIAO J, CHENG YM, GUAN ZZ, QI XL, CHEN ZH, HONG W, CUI GZ. The fliL gene significantly affects the motility function and spore production ability of Clostridium difficile[J]. Chinese Journal of Biotechnology, 2023, 39(4):1578-1595(in Chinese).
    [22] HONG W, ZHANG J, CUI GZ, WANG LX, WANG Y. Multiplexed CRISPR-Cpf1-mediated genome editing in Clostridium difficile toward the understanding of pathogenesis of C. difficile infection[J]. ACS Synthetic Biology, 2018, 7(6):1588-1600.
    [23] EHSAAN M, KUEHNE SA, MINTON NP. Clostridium difficile genome editing using pyrE alleles[M]//Methods in Molecular Biology. New York, NY:Springer New York, 2016:35-52.
    [24] HAMO Z, AZRAD M, FICHTMAN B, PERETZ A. The cytopathic effect of different toxin concentrations from different Clostridioides difficile sequence types strains in vero cells[J]. Frontiers in Microbiology, 2021, 12:763129.
    [25] McALLISTER KN, BOUILLAUT L, KAHN JN, SELF WT, SORG JA. Using CRISPR-Cas9-mediated genome editing to generate C. difficile mutants defective in selenoproteins synthesis[J]. Scientific Reports, 2017, 7(1):14672.
    [26] WYDAU-DEMATTEIS S, EL MEOUCHE I, COURTIN P, HAMIOT A, LAI-KUEN R, SAUBAMÉA B, FENAILLE F, BUTEL MJ, PONS JL, DUPUY B, CHAPOT-CHARTIER MP, PELTIER J. Cwp19 is a novel lytic transglycosylase involved in stationary-phase autolysis resulting in toxin release in Clostridium difficile[J]. mBio, 2018, 9(3):e00648-e00618.
    [27] DHALLUIN A, BOURGEOIS I, PESTEL-CARON M, CAMIADE E, RAUX G, COURTIN P, CHAPOT-CHARTIER MP, PONS JL. Acd, a peptidoglycan hydrolase of Clostridium difficile with N-acetylglucosaminidase activity[J]. Microbiology, 2005, 151(7):2343-2351.
    [28] CAO LJ, LIANG DM, HAO PL, SONG QQ, XUE ES, CAIYIN Q, CHENG ZH, QIAO JJ. The increase of O-acetylation and N-deacetylation in cell wall promotes acid resistance and nisin production through improving cell wall integrity in Lactococcus lactis[J]. Journal of Industrial Microbiology & Biotechnology, 2018, 45(9):813-825.
    [29] LIMA L M, SILVA B N M DA, BARBOSA G, BARREIRO EJ. β-lactam antibiotics:an overview from a medicinal chemistry perspective[J]. European Journal of Medicinal Chemistry, 2020, 208:112829.
    [30] STOGIOS PJ, SAVCHENKO A. Molecular mechanisms of vancomycin resistance[J]. Protein Science:a Publication of the Protein Society, 2020, 29(3):654-669.
    [31] LIN J, NISHINO K, ROBERTS MC, TOLMASKY M, AMINOV RI, ZHANG LX. Mechanisms of antibiotic resistance[J]. Frontiers in Microbiology, 2015, 6:34.
    [32] ESPAILLAT A, FORSMO O, EL BIARI K, BJÖRK R, LEMAITRE B, TRYGG J, CAÑADA FJ, de PEDRO MA, CAVA F. Chemometric analysis of bacterial peptidoglycan reveals atypical modifications that empower the cell wall against predatory enzymes and fly innate immunity[J]. Journal of the American Chemical Society, 2016, 138(29):9193-9204.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨君仪,鲍江舰,邵瑞瑞,张婷,廖健,程玉梅,官志忠,齐晓岚,陈峥宏,崔古贞,洪伟. CD630_27900基因缺失显著降低艰难拟梭菌自溶速率、毒力及对酸和抗生素的耐受性[J]. 微生物学报, 2023, 63(6): 2440-2455

复制
分享
文章指标
  • 点击次数:263
  • 下载次数: 933
  • HTML阅读次数: 593
  • 引用次数: 0
历史
  • 收稿日期:2022-09-26
  • 最后修改日期:2023-02-08
  • 在线发布日期: 2023-06-06
  • 出版日期: 2023-06-04
文章二维码