磷脂酰肌醇类脂质在嗜肺军团菌发病机制中作用的研究进展
作者:
基金项目:

国家自然科学基金(82225028,82172287)


Research progress in the role of phosphatidylinositol lipids in Legionella pneumophila pathogenesis
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [45]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    嗜肺军团菌(Legionella pneumophila)是一种能引起被称为“军团病”的严重肺炎的致病菌,其利用自身的IVB型分泌系统(type IVB secretion systems)将效应蛋白转运到宿主细胞中,作用于宿主蛋白质和脂质,以形成军团菌在宿主细胞内生长所需的吞噬泡(Legionella-containing vacuole, LCV)。磷酸酰肌醇(phosphatidylinositols, PIs)作为细胞的重要脂质组成,参与细胞信号转导及囊泡转运等过程。而大量的证据表明嗜肺军团菌利用其效应蛋白调控宿主磷酸酰肌醇类脂质代谢及其LCV膜的脂质组成,以促进LCV的成熟。本文主要从军团菌的致病机制、其效应蛋白对磷酸酰肌醇类脂质的代谢调控及对宿主磷脂酰肌醇代谢酶的招募等方面进行了综述分析,期望对进一步理解军团菌调控宿主脂质代谢分子机制和其致病机制提供参考。

    Abstract:

    Legionella pneumophila, the causative agent of the severe pneumonia known as Legionnaires’ disease, uses its IVB secretion system to transport effector proteins into host cells. The effectors interact with host proteins and lipids to form a unique bacterial phagosome, Legionella-containing vacuole (LCV), which is required for the growth of Legionella in host cells. Phosphatidylinositols (PIs), a group of essential lipids for cells, are involved in signal transduction and vesicle transport. The available studies have demonstrated that L. pneumophila uses its effectors to regulate the host PI metabolism and the lipid composition of LCV membrane to promote the LCV maturation. We review the studies about the pathogenesis of L. pneumophila and the modulation of host PI metabolism and the related enzymes by the effectors of L. pneumophila, expecting to provide a reference for further understanding the regulation mechanisms of host lipid metabolism by Legionella.

    参考文献
    [1] FIELDS BS, BENSON RF, BESSER RE. Legionella and Legionnaires’ disease: 25 years of investigation[J]. Clinical Microbiology Reviews, 2002, 15(3): 506-526.
    [2] FRASER DW, TSAI TR, ORENSTEIN W, PARKIN WE, BEECHAM HJ, SHARRAR RG, HARRIS J, MALLISON GF, MARTIN SM, McDADE JE, SHEPARD CC, BRACHMAN PS. Legionnaires’ disease: description of an epidemic of pneumonia[J]. The New England Journal of Medicine, 1977, 297(22): 1189-1197.
    [3] PAPPA O, CHOCHLAKIS D, SANDALAKIS V, DIOLI C, PSAROULAKI A, MAVRIDOU A. Antibiotic resistance of Legionella pneumophila in clinical and water isolates-a systematic review[J]. International Journal of Environmental Research and Public Health, 2020, 17(16): 5809.
    [4] QIU JZ, LUO ZQ. Legionella and Coxiella effectors: strength in diversity and activity[J]. Nature Reviews Microbiology, 2017, 15(10): 591-605.
    [5] QIU JZ, LUO ZQ. Hijacking of the host ubiquitin network by Legionella pneumophila[J]. Frontiers in Cellular and Infection Microbiology, 2017, 7: 487.
    [6] CHANG B, KURA F, AMEMURA-MAEKAWA J, KOIZUMI N, WATANABE H. Identification of a novel adhesion molecule involved in the virulence of Legionella pneumophila[J]. Infection and Immunity, 2005, 73(7): 4272-4280.
    [7] XU Y, GUAN W, XU JN, CAO DP, YANG BB, CHEN DL, CHEN JP. Evaluation of the protective immunity of the Legionella pneumophila recombinant protein FlaA/MompS/PilE in an A/J mouse model[J]. Vaccine, 2011, 29(23): 4051-4057.
    [8] NEWTON HJ, SANSOM FM, DAO J, CAZALET C, BRUGGEMANN H, ALBERT-WEISSENBERGER C, BUCHRIESER C, CIANCIOTTO NP, HARTLAND EL. Significant role for ladC in initiation of Legionella pneumophila infection[J]. Infection and Immunity, 2008, 76(7): 3075-3085.
    [9] VANDERSMISSEN L, de BUCK E, SAELS V, COIL DA, ANNÉ J. A Legionella pneumophila collagen-like protein encoded by a gene with a variable number of tandem repeats is involved in the adherence and invasion of host cells[J]. FEMS Microbiology Letters, 2010, 306(2): 168-176.
    [10] PAYNE NR, HORWITZ MA. Phagocytosis of Legionella pneumophila is mediated by human monocyte complement receptors[J]. The Journal of Experimental Medicine, 1987, 166(5): 1377-1389.
    [11] HORWITZ MA. Phagocytosis of the legionnaires’ disease bacterium (Legionella pneumophila) occurs by a novel mechanism: engulfment within a pseudopod coil[J]. Cell, 1984, 36(1): 27-33.
    [12] ALBERT-WEISSENBERGER C, CAZALET C, BUCHRIESER C. Legionella pneumophila-a human pathogen that co-evolved with fresh water protozoa[J]. Cellular and Molecular Life Sciences: CMLS, 2007, 64(4): 432-448.
    [13] GOMEZ-VALERO L, RUSNIOK C, CARSON D, MONDINO S, PÉREZ-COBAS AE, ROLANDO M, PASRICHA S, REUTER S, DEMIRTAS J, CRUMBACH J, DESCORPS-DECLERE S, HARTLAND EL, JARRAUD S, DOUGAN G, SCHROEDER GN, FRANKEL G, BUCHRIESER C. More than 18 000 effectors in the Legionella genus genome provide multiple, independent combinations for replication in human cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(6): 2265-2273.
    [14] BURSTEIN D, AMARO F, ZUSMAN T, LIFSHITZ Z, COHEN O, GILBERT JA, PUPKO T, SHUMAN HA, SEGAL G. Genomic analysis of 38 Legionella species identifies large and diverse effector repertoires[J]. Nature Genetics, 2016, 48(2): 167-175.
    [15] JUHAS M, CROOK DW, HOOD DW. Type IV secretion systems: tools of bacterial horizontal gene transfer and virulence[J]. Cellular Microbiology, 2008, 10(12): 2377-2386.
    [16] ROY CR, ISBERG RR. Topology of Legionella pneumophila DotA: an inner membrane protein required for replication in macrophages[J]. Infection and Immunity, 1997, 65(2): 571-578.
    [17] VINCENT CD, FRIEDMAN JR, JEONG KC, BUFORD EC, MILLER JL, VOGEL JP. Identification of the core transmembrane complex of the Legionella Dot/Icm type IV secretion system[J]. Molecular Microbiology, 2006, 62(5): 1278-1291.
    [18] SUTHERLAND MC, NGUYEN TL, TSENG V, VOGEL JP. The Legionella IcmSW complex directly interacts with DotL to mediate translocation of adaptor-dependent substrates[J]. PLoS Pathogens, 2012, 8(9): e1002910.
    [19] GHOSAL D, JEONG KC, CHANG YW, GYORE J, TENG L, GARDNER A, VOGEL JP, JENSEN GJ. Molecular architecture, polar targeting and biogenesis of the Legionella Dot/Icm T4SS[J]. Nature Microbiology, 2019, 4(7): 1173-1182.
    [20] MEIR A, CHETRIT D, LIU LY, ROY CR, WAKSMAN G. Legionella DotM structure reveals a role in effector recruiting to the type 4B secretion system[J]. Nature Communications, 2018, 9: 507.
    [21] QIU JZ, SHEEDLO MJ, YU KW, TAN YH, NAKAYASU ES, DAS C, LIU XY, LUO ZQ. Ubiquitination independent of E1 and E2 enzymes by bacterial effectors[J]. Nature, 2016, 533(7601): 120-124.
    [22] GAN NH, ZHEN XK, LIUf Legionella effector SetA[J]. Cellular Microbiology, 2012, 14(6): 852-868.
    [41] WEBER SS, RAGAZ C, HILBI H. The inositol polyphosphate 5-phosphatase OCRL1 restricts intracellular growth of Legionella, localizes to the replicative vacuole and binds to the bacterial effector LpnE[J]. Cellular Microbiology, 2009, 11(3): 442-460.
    [42] KUBORI T, KITAO T, ANDO H, NAGAI H. LotA, a Legionella deubiquitinase, has dual catalytic activity and contributes to intracellular growth[J]. Cellular Microbiology, 2018, 20(7): e12840.
    [43] YAO JL, YANG F, SUN XD, WANG S, GAN NH, LIU Q, LIU DD, ZHANG X, NIU DW, WEI YQ, MA C, LUO ZQ, SUN QX, JIA D. Mechanism of inhibition of retromer transport by the bacterial effector RidL[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(7): E1446-E1454.
    [44] ZHU YQ, HU LY, ZHOU Y, YAO Q, LIU LP, SHAO F. Structural mechanism of host Rab1 activation by the bifunctional Legionella type IV effector SidM/DrrA[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(10): 4699-4704.
    [45] DOLINSKY S, HANEBURGER I, CICHY A, HANNEMANN M, ITZEN A, HILBI H. The Legionella longbeachae Icm/Dot substrate SidC selectively binds phosphatidylinositol 4-phosphate with nanomolar affinity and promotes pathogen vacuole-endoplasmic reticulum interactions[J]. Infection and Immunity, 2014, 82(10): 4021-4033.
    [46] HSU F, LUO X, QIU JZ, TENG YB, JIN JP, SMOLKA MB, LUO ZQ, MAO YX. The Legionella effector SidC defines a unique family of ubiquitin ligases important for bacterial phagosomal remodeling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(29): 10538-10543.
    [47] HORENKAMP FA, MUKHERJEE S, ALIX E, SCHAUDER CM, HUBBER AM, ROY CR, REINISCH KM. Legionella pneumophila subversion of host vesicular transport by SidC effector proteins[J]. Traffic (Copenhagen, Denmark), 2014, 15(5): 488-499.
    [48] CAMPANACCI V, MUKHERJEE S, ROY CR, CHERFILS J. Structure of the Legionella effector AnkX reveals the mechanism of phosphocholine transfer by the FIC domain[J]. The EMBO Journal, 2013, 32(10): 1469-1477.
    [49] NEUNUEBEL MR, MOHAMMADI S, JARNIK M, MACHNER MP. Legionella pneumophila LidA affects nucleotide binding and activity of the host GTPase Rab1[J]. Journal of Bacteriology, 2012, 194(6): 1389-1400.
    [50] HSU F, ZHU WH, BRENNAN L, TAO LL, LUO ZQ, MAO YX. Structural basis for substrate recognition by a unique Legionella phosphoinositide phosphatase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(34): 13567-13572.
    [51] TOULABI L, WU XC, CHENG YS, MAO YX. Identification and structural characterization of a Legionella phosphoinositide phosphatase[J]. Journal of Biologic?l Chemistry, 2013, 288(34): 24518-?4527.
    [52] HSIEH TS, LOPEZ VA, BLACK MH, OSINSKI A, PAWŁOWSKI K, TOMCHICK DR, LIOU J, TAGLIABRACCI VS. Dynamic remodeling of host membranes by self-organizing bacterial effectors[J]. Science, 2021, 372(6545): 935-941.
    [53] WEBER S, STIRNIMANN CU, WIESER M, FREY D, MEIER R, ENGELHARDT S, LI XD, CAPITANI G, KAMMERER RA, HILBI H. A type IV translocated Legionella cysteine phytase counteracts intracellular growth restriction by phytate[J]. The Journal of Biological Chemistry, 2014, 289(49): 34175-34188.
    [54] INGMUNDSON A, DELPRATO A, LAMBRIGHT DG, ROY CR. Legionella pneumophila proteins that regulate Rab1 membrane cycling[J]. Nature, 2007, 450(7168): 365-369.
    [55] DONG N, NIU M, HU LY, YAO Q, ZHOU R, SHAO F. Modulation of membrane phosphoinositide dynamics by the phosphatidylinositide 4-kinase activity of the Legionella LepB effector[J]. Nature Microbiology, 2017, 2: 16236.
    [56] LI G, LIU HT, LUO ZQ, QIU JZ. Modulation of phagosome phosphoinositide dynamics by a Legionella phosphoinositide 3-kinase[J]. EMBO Reports, 2021, 22(3): e51163.
    [57] LEDVINA HE, KELLY KA, ESHRAGHI A, PLEMEL RL, PETERSON SB, LEE B, STEELE S, ADLER M, KAWULA TH, MERZ AJ, SKERRETT SJ, CELLI J, MOUGOUS JD. A phosphatidylinositol 3-kinase effector alters phagosomal maturation to promote intracellular growth of Francisella[J]. Cell Host & Microbe, 2018, 24(2): 285-295.e8.
    [58] KU B, LEE KH, PARK WS, YANG CS, GE JN, LEE SG, CHA SS, SHAO F, HEO WD, JUNG JU, OH BH. VipD of Legionella pneumophila targets activated Rab5 and Rab22 to interfere with endosomal trafficking in macrophages[J]. PLoS Pathogens, 2012, 8(12): e1003082.
    [59] AURASS P, SCHLEGEL M, METWALLY O, HARDING CR, SCHROEDER GN, FRANKEL G, FLIEGER A. The Legionella pneumophila Dot/Icm-secreted effector PlcC/CegC1 together with PlcA and PlcB promotes virulence and belongs to a novel zinc metallophospholipase C family present in bacteria and fungi[J]. The Journal of Biological Chemistry, 2013, 288(16): 11080-11092.
    [60] SCHROEDER GN, AURASS P, OATES CV, TATE EW, HARTLAND EL, FLIEGER A, FRANKEL G. Legionella pneumophila effector LpdA is a palmitoylated phospholipase D virulence factor[J]. Infection and Immunity, 2015, 83(10): 3989-4002.
    [61] AMOR JC, SWAILS J, ZHU XJ, ROY CR, NAGAI H, INGMUNDSON A, CHENG XD, KAHN RA. The structure of RalF, an ADP-ribosylation factor guanine nucleotide exchange factor from Legionella pneumophila, reveals the presence of a cap over the active site[J]. The Journal of Biological Chemistry, 2005, 280(2): 1392-1400.
    [62] HYVOLA N, DIAO AP, McKENZIE E, SKIPPEN A, COCKCROFT S, LOWE M. Membrane targeting and activation of the Lowe syndrome protein OCRL1 by rab GTPases[J]. The EMBO Journal, 2006, 25(16): 3750-3761.
    [63] VOTH KA, CHUNG IYW, van STRAATEN K, LI L, BONIECKI MT, CYGLER M. The structure of Legionella effector protein LpnE provides insights into its interaction with oculocerebrorenal syndrome of Lowe (OCRL) protein[J]. The FEBS Journal, 2019, 286(4): 710-725.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

何达明,陈涛涛,欧阳松应. 磷脂酰肌醇类脂质在嗜肺军团菌发病机制中作用的研究进展[J]. 微生物学报, 2023, 63(7): 2523-2533

复制
分享
文章指标
  • 点击次数:303
  • 下载次数: 736
  • HTML阅读次数: 1046
  • 引用次数: 0
历史
  • 收稿日期:2022-10-11
  • 最后修改日期:2023-01-01
  • 在线发布日期: 2023-07-05
  • 出版日期: 2023-07-04
文章二维码