共生微生物对昆虫化学感受的影响
作者:
基金项目:

国家自然科学基金(32272531);河南省科技攻关项目(202202110069)


Influence of microbial symbionts on chemoreception of insect hosts
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [68]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    共生微生物通过影响昆虫信息化合物的合成或感受来调控宿主的化学通讯,进而影响昆虫的交流、防御、捕食和扩散行为。这种调控作用有助于共生微生物的扩散,但对宿主可能是有利的,也可能是有害的,并为共生体系的协同进化提供动力。本文围绕近年来共生微生物对昆虫化学感受的影响及其机制展开综述,并分析其进化意义,旨在为昆虫化学生态学理论提供补充,并为开发新的害虫防治策略提供思路。

    Abstract:

    Symbiotic microorganisms regulate host chemical communication by affecting the synthesis and perception of insect semiochemicals, which in turn influences insect communication, defense, predation, and dispersal behavior. The effect of microbial symbionts on host chemical communication facilitates the spread of microorganisms, but could be beneficial or detrimental to the host, and provides the impetus for the co-evolution of symbiotic systems. In this paper, we review recent studies on the effects of microbial symbionts on insect chemoreception and their mechanisms, and analyze their evolutionary significance, aiming to provide supplementary information to the theory of insect chemical ecology and provide insight into the development of new pest control strategies.

    参考文献
    [1] 王争艳, 何梦婷, 鲁玉杰. 共生微生物对昆虫化学通讯的影响[J]. 应用昆虫学报, 2020, 57(6): 1240-1248. WANG ZY, HE MT, LU YJ. Influence of microbial symbionts on chemical communication in insects[J]. Chinese Journal of Applied Entomology, 2020, 57(6): 1240-1248 (in Chinese).
    [2] YUAN XQ, ZHANG X, LIU XY, DONG YL, YAN ZZ, LV DB, WANG P, LI YP. Comparison of gut bacterial communities of Grapholita molesta (Lepidoptera: Tortricidae) reared on different host plants[J]. International Journal of Molecular Sciences, 2021, 22(13): 6843.
    [3] 王争艳, 王文芳, 鲁玉杰. 共生菌与昆虫抗药性[J]. 应用昆虫学报, 2021, 58(2): 265-276. WANG ZY, WANG WF, LU YJ. Symbiotic microbiota and insecticide resistance in insects[J]. Chinese Journal of Applied Entomology, 2021, 58(2): 265-276 (in Chinese).
    [4] 王争艳, 雍晗紫, 胡海生. 共生菌与昆虫的免疫[J]. 微生物学报, 2022, 62(8): 2893-2904. WANG ZY, YONG HZ, HU HS. Symbiotic bacteria and insect immunity[J]. Acta Microbiologica Sinica, 2022, 62(8): 2893-2904 (in Chinese).
    [5] 胡紫媛, 夏嫱. 昆虫肠道菌群组学研究及功能和应用进展[J]. 生物技术通报, 2021, 37(1): 102-112. HU ZY, XIA Q. Advances in the histology study, function and application of insect intestinal flora[J]. Biotechnology Bulletin, 2021, 37(1): 102-112 (in Chinese).
    [6] WU ZZ, ZHANG H, BIN SY, CHEN L, HAN QX, LIN JT. Antennal and abdominal transcriptomes reveal chemosensory genes in the Asian Citrus psyllid, Diaphorina citri[J]. PLoS One, 2016, 11(7): e0159372.
    [7] PIZZOLANTE G, CORDERO C, TREDICI SM, VERGARA D, PONTIERI P, del GIUDICE L, CAPUZZO A, RUBIOLO P, KANCHISWAMY CN, ZEBELO SA, BICCHI C, MAFFEI ME, ALIFANO P. Cultivable gut bacteria provide a pathway for adaptation of Chrysolina herbacea to Mentha aquatica volatiles[J]. BMC Plant Biology, 2017, 17(1): 1-20.
    [8] 闫琴, 王明亮, 花蕾, 王杰, 张宏雨, 刘宇虹, 白芃, 付慧, 张俊洁, 刘威. 短小乳杆菌的代谢产物对黑腹果蝇产卵选择性的影响[J]. 昆虫学报, 2019, 62(12): 1400-1408. YAN Q, WANG ML, HUA L, WANG J, ZHANG HY, LIU YH, BAI P, FU H, ZHANG JJ, LIU W. Effects of the metabolites of Lactobacillus brevis on the oviposition selection of Drosophila melanogaster[J]. Acta Entomologica Sinica, 2019, 62(12): 1400-1408 (in Chinese).
    [9] 王洋. 肠道微生物对赤拟谷盗化学通讯的影响研究[D]. 郑州: 河南工业大学硕士学位论文, 2019. WANG Y. The effect of gut microbiota in chemical communication of Tribolium castaneum[D]. Zhengzhou: Master’s Thesis of Henan University of Technology, 2019 (in Chinese).
    [10] 何梦婷. 肠道共生菌调控赤拟谷盗信息素生物合成的机制研究. 郑州: 河南工业大学硕士学位论文, 2020. HE MT. Study on the mechanism underlying the function of gut symbiotic bacteria on the pheromone biosynthesis of Tribolium castaneum[D]. Zhengzhou: Master’s Thesis of Henan University of Technology, 2020 (in Chinese).
    [11] GABURRO J, PARADKAR PN, KLEIN M, BHATTI A, NAHAVANDI S, DUCHEMIN JB. Dengue virus infection changes Aedes aegypti oviposition olfactory preferences[J]. Scientific Reports, 2018, 8: 13179.
    [12] DAVYT-COLO B, GIROTTI JR, GONZÁLEZ A, PEDRINI N. Secretion and detection of defensive compounds by the red flour beetle Tribolium castaneum interacting with the insect pathogenic fungus Beauveria bassiana[J]. Pathogens, 2022, 11(5): 487.
    [13] ENGL T, KALTENPOTH M. Influence of microbial symbionts on insect pheromones[J]. Natural Product Reports, 2018, 35(5): 386-397.
    [14] CACCIA S, Di LELIO I, la STORIA A, MARINELLI A, VARRICCHIO P, FRANZETTI E, BANYULS N, TETTAMANTI G, CASARTELLI M, GIORDANA B, FERRÉ J, GIGLIOTTI S, ERCOLINI D, PENNACCHIO F. Midgut microbiota and host immunocompetence underlie Bacillus thuringiensis killing mechanism[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(34): 9486-9491.
    [15] THOMAS S, IZARD J, WALSH E, BATICH K, CHONGSATHIDKIET P, CLARKE G, SELA DA, MULLER AJ, MULLIN JM, ALBERT K, GILLIGAN JP, DiGUILIO K, DILBAROVA R, ALEXANDER W, PRENDERGAST GC. The host microbiome regulates and maintains human health: a primer and perspective for non-microbiologists[J]. Cancer Research, 2017, 77(8): 1783-1812.
    [16] PELOSI P, ZHOU JJ, BAN LP, CALVELLO M. Soluble proteins in insect chemical communication[J]. Cellular and Molecular Life Sciences, 2006, 63(14): 1658-1676.
    [17] PASK GM, RAY A. Insect olfactory receptors[M]// Chemosensory Transduction. Amsterdam: Elsevier, 2016: 101-122.
    [18] 孙思捷. 小菜蛾味觉受体基因的克隆、组织表达谱及功能研究[D]. 南京: 南京农业大学硕士学位论文, 2019. SUN SJ. Molecular cloning, tissue expression and functional study of gustory receptor genes from Plutella xylostella (Lepidoptera: Plutellidae)[D]. Nanjing: Master’s Thesis of Nanjing Agricultural University, 2019 (in Chinese).
    [19] CHAFEE ME, ZECHER CN, GOURLEY ML, SCHMIDT VT, CHEN JH, BORDENSTEIN SR, CLARK ME, BORDENSTEIN SR. Decoupling of host-symbiont-phage coadaptations following transfer between insect species[J]. Genetics, 2011, 187(1): 203-215.
    [20] ZHAO DX, ZHANG XF, CHEN DS, ZHANG YK, HONG XY. Wolbachia-host interactions: host mating patterns affect Wolbachia density dynamics[J]. PLoS One, 2013, 8(6): e66373.
    [21] SILVA D, CEBALLOS R, ARISMENDI N, DALMON A, VARGAS M. Variant A of the deformed wings virus alters the olfactory sensitivity and the expression of odorant binding proteins on antennas of Apis mellifera[J]. Insects, 2021, 12(10): 895.
    [22] GEORGE J, BLANFORD S, DOMINGUE MJ, THOMAS MB, READ AF, BAKER TC. Reduction in host-finding behaviour in fungus-infected mosquitoes is correlated with reduction in olfactory receptor neuron responsiveness[J]. Malaria Journal, 2011, 10(1): 1-13.
    [23] VORBURGER C, GANESANANDAMOORTHY P, KWIATKOWSKI M. Comparing constitutive and induced costs of symbiont-conferred resistance to parasitoids in aphids[J]. Ecology and Evolution, 2013, 3(3): 706-713.
    [24] SLANKSTER E, LEE C, HESS KM, ODELL S, MATHEW D. Effect of gut microbes on olfactory behavior of Drosophila melanogaster larva[J]. Bios, 2019, 90(4): 227.
    [25] PENG Y, WANG YF. Infection of Wolbachia may improve the olfactory response of Drosophila[J]. Science Bulletin, 2009, 54(8): 1369-1375.
    [26] ZHENG H, ELIJAH POWELL J, STEELE MI, DIETRICH C, MORAN NA. Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(18): 4775-4780.
    [27] BERNAYS EA, SINGER MS. Taste alteration and endoparasites[J]. Nature, 2005, 436(7050): 476.
    [28] SWARTZ TD, DUCA FA, de WOUTERS T, SAKAR Y, COVASA M. Up-regulation of intestinal type 1 taste receptor 3 and sodium glucose luminal transporter-1 expression and increased sucrose intake in mice lacking gut microbiota[J]. British Journal of Nutrition, 2012, 107(5): 621-630.
    [29] LEUNG R, COVASA M. Do gut microbes taste?[J]. Nutrients, 2021, 13(8): 2581.
    [30] ZHANG ZJ, MU XH, SHI Y, ZHENG H. Distinct roles of honeybee gut bacteria on host metabolism and neurological processes[J]. Microbiology Spectrum, 2022, 10(2): e02438-21.
    [31] SIM S, RAMIREZ JL, DIMOPOULOS G. Dengue virus infection of the Aedes aegypti salivary gland and chemosensory apparatus induces genes that modulate infection and blood-feeding behavior[J]. PLoS Pathogens, 2012, 8(3): e1002631.
    [32] WANG J, MURPHY EJ, NIX JC, JONES DNM. Aedes aegypti odorant binding protein 22 selectively binds fatty acids through a conformational change in its C-terminal tail[J]. Scientific Reports, 2020, 10: 3300.
    [33] HITCHEN SJ, SHOSTAK AW, BELOSEVIC M. Hymenolepis diminuta (Cestoda) induces changes in expression of select genes of Tribolium confusum (Coleoptera)[J]. Parasitology Research, 2009, 105(3): 875-879.
    [34] SHI XB, WANG XZ, ZHANG DY, ZHANG ZH, ZHANG Z, CHENG JE, ZHENG LM, ZHOU XG, TAN XQ, LIU Y. Silencing of odorant-binding protein gene OBP3 using RNA interference reduced virus transmission of tomato chlorosis virus[J]. International Journal of Molecular Sciences, 2019, 20(20): 4969.
    [35] ZHENG RW, XIA YX, KEYHANI NO. Differential responses of the antennal proteome of male and female migratory locusts to infection by a fungal pathogen[J]. Journal of Proteomics, 2021, 232: 104050.
    [36] WEI Z, ORTIZ-URQUIZA A, KEYHANI NO. Altered expression of chemosensory and odorant binding proteins in response to fungal infection in the red imported fire ant, Solenopsis invicta[J]. Frontiers in Physiology, 2021, 12: 596571.
    [37] BENOIT JB, VIGNERON A, BRODERICK NA, WU YN, SUN JS, CARLSON JR, AKSOY S, WEISS BL. Symbiont-induced odorant binding proteins mediate insect host hematopoiesis[J]. eLife, 2017, 6: 19535.
    [38] LIU XL, LUO Q, ZHONG GH, RIZWAN-UL-HAQ M, HU MY. Molecular characterization and expression pattern of four chemosensory proteins from diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae)[J]. The Journal of Biochemistry, 2010, 148(2): 189-200.
    [39] 郑人文. 东亚飞蝗躲避病原真菌行为的分子机制研究[D]. 重庆: 重庆大学博士学位论文, 2020. ZHENG RW. The avoidance mechanism of fungal pathogens in the Locusta migratoria[D]. Chongqing: Doctoral Dissertation of Chongqing University, 2020 (in Chinese).
    [40] ZHANG W, XIE MS, ELEFTHERIANOS I, MOHAMED A, CAO YQ, SONG BA, ZANG LS, JIA C, BIAN J, KEYHANI NO, XIA YX. An odorant binding protein is involved in counteracting detection-avoidance and Toll-pathway innate immunity[J]. Journal of Advanced Research, 2023, 48: 1-16.
    [41] BADAOUI B, FOUGEROUX A, PETIT F, ANSELMO A, GORNI C, CUCURACHI M, CERSINI A, GRANATO A, CARDETI G, FORMATO G, MUTINELLI F, GIUFFRA E, WILLIAMS JL, BOTTI S. RNA-sequence analysis of gene expression from honeybees (Apis mellifera) infected with Nosema ceranae[J]. PLoS One, 2017, 12(3): e0173438.
    [42] SENGUL MS, TU ZJ. Expression analysis and knockdown of two antennal odorant-binding protein genes in Aedes aegypti[J]. Journal of Insect Science, 2010, 10(171): 1-18.
    [43] AGUILAR R, JEDLICKA AE, MINTZ M, MAHAIRAKI V, SCOTT AL, DIMOPOULOS G. Global gene expression analysis of Anopheles gambiae responses to microbial challenge[J]. Insect Biochemistry and Molecular Biology, 2005, 35(7): 709-719.
    [44] PENG Y, NIELSEN JE, CUNNINGHAM JP, McGRAW EA. Wolbachia infection alters olfactory-cued locomotion in Drosophila spp.[J]. Applied and Environmental Microbiology, 2008, 74(13): 3943-3948.
    [45] BADJI CA, SOL-MOCHKOVITCH Z, FALLAIS C, SOCHARD C, SIMON JC, OUTREMAN Y, ANTON S. Alarm pheromone responses depend on genotype, but not on the presence of facultative endosymbionts in the pea aphid Acyrthosiphon pisum[J]. Insects, 2021, 12(1): 43.
    [46] LLOPIS-GIMÉNEZ A, CABALLERO-VIDAL G, JACQUIN-JOLY E, CRAVA CM, HERRERO S. Baculovirus infection affects caterpillar chemoperception[J]. Insect Biochemistry and Molecular Biology, 2021, 138: 103648.
    [47] LI S, ZHOU CW, ZHOU YJ. Olfactory co-receptor Orco stimulated by rice stripe virus is essential for host seeking behavior in small brown planthopper[J]. Pest Management Science, 2019, 75(1): 187-194.
    [48] YOUNUS F, CHERTEMPS T, PEARCE SL, PANDEY G, BOZZOLAN F, COPPIN CW, RUSSELL RJ, MAÏBÈCHE-COISNE M, OAKESHOTT JG. Identification of candidate odorant degrading gene/enzyme systems in the antennal transcriptome of Drosophila melanogaster[J]. Insect Biochemistry and Molecular Biology, 2014, 53: 30-43.
    [49] HEYDEL JM, COELHO A, THIEBAUD N, LEGENDRE A, Le BON AM, FAURE P, NEIERS F, ARTUR Y, GOLEBIOWSKI J, BRIAND L. Odorant-binding proteins and xenobiotic metabolizing enzymes: implications in olfactory perireceptor events[J]. The Anatomical Record, 2013, 296(9): 1333-1345.
    [50] FRANÇOIS A, GREBERT D, RHIMI M, MARIADASSOU M, NAUDON L, RABOT S, MEUNIER N. Olfactory epithelium changes in germfree mice[J]. Scientific Reports, 2016, 6: 24687.
    [51] MILLER WJ, EHRMAN L, SCHNEIDER D. Infectious speciation revisited: impact of symbiont-depletion on female fitness and mating behavior of Drosophila paulistorum[J]. PLoS Pathogens, 2010, 6(12): e1001214.
    [52] STRUNOV A, SCHNEIDER DI, ALBERTSON R, MILLER WJ. Restricted distribution and lateralization of mutualistic Wolbachia in the Drosophila brain[J]. Cellular Microbiology, 2017, 19(1): e12639.
    [53] YANG NJ, CHIU IM. Bacterial signaling to the nervous system through toxins and metabolites[J]. Journal of Molecular Biology, 2017, 429(5): 587-605.
    [54] CLARKE G, STILLING RM, KENNEDY PJ, STANTON C, CRYAN JF, DINAN TG. Minireview: gut microbiota: the neglected endocrine organ[J]. Molecular Endocrinology, 2014, 28(8): 1221-1238.
    [55] O’DONNELL MP, FOX BW, CHAO PH, SCHROEDER FC, SENGUPTA P. A neurotransmitter produced by gut bacteria modulates host sensory behaviour[J]. Nature, 2020, 583(7816): 415-420.
    [56] BI J, SEHGAL A, WILLIAMS JA, WANG YF. Wolbachia affects sleep behavior in Drosophila melanogaster[J]. Journal of Insect Physiology, 2018, 107: 81-88.
    [57] BI J, WANG YF. The effect of the endosymbiont Wolbachia on the behavior of insect hosts[J]. Insect Science, 2020, 27(5): 846-858.
    [58] HARI DASS SA, VYAS A. Toxoplasma gondii infection reduces predator aversion in rats through epigenetic modulation in the host medial amygdala[J]. Molecular Ecology, 2014, 23(24): 6114-6122.
    [59] ARLOG A, SCHLÜTER D, DUNAY IR. Toxoplasma gondii-induced neuronal alterations[J]. Parasite Immunology, 2015, 37(3): 159-170.
    [60] CAI XT, LI HJ, BORCH JENSEN M, MAKSOUD E, BORNEO J, LIANG YX, QUAKE SR, LUO LQ, HAGHIGHI P, JASPER H. Gut cytokines modulate olfaction through metabolic reprogramming of glia[J]. Nature, 2021, 596(7870): 97-102.
    [61] SAVERSCHEK N, ROCES F. Foraging leafcutter ants: olfactory memory underlies delayed avoidance of plants unsuitable for the symbiotic fungus[J]. Animal Behaviour, 2011, 82(3): 453-458.
    [62] SHI WP, GUO Y, XU C, TAN SQ, MIAO J, FENG YJ, ZHAO H, ST LEGER RJ, FANG WG. Unveiling the mechanism by which microsporidian parasites prevent locust swarm behavior[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(4): 1343-1348.
    [63] FENG YJ, GE Y, TAN SQ, ZHANG KQ, JI R, SHI WP. Effect of Paranosema locustae (Microsporidia) on the behavioural phases of Locusta Migratoria (Orthoptera: Acrididae) in the laboratory[J]. Biocontrol Science and Technology, 2015, 25(1): 48-55.
    [64] SANDHI RK, REDDY GVP. Biology, ecology, and management strategies for pea aphid (Hemiptera: Aphididae) in pulse crops[J]. Journal of Integrated Pest Management, 2020, 11(1): 18.
    [65] NOMAN MS, SHI G, LIU LJ, LI ZH. Diversity of bacteria in different life stages and their impact on the development and reproduction of Zeugodacus tau (Diptera: Tephritidae)[J]. Insect Science, 2021, 28(2): 363-376.
    [66] ZHANG Q, WANG SM, ZHANG XY, ZHANG KX, LIU WJ, ZHANG RL, ZHANG Z. Enterobacter hormaechei in the intestines of housefly larvae promotes host growth by inhibiting harmful intestinal bacteria[J]. Parasites & Vectors, 2021, 14(1): 1-15.
    [67] LEE J, KIM CH, JANG HA, KIM JK, KOTAKI T, SHINODA T, SHINADA T, YOO JW, LEE BL. Burkholderia gut symbiont modulates titer of specific juvenile hormone in the bean bug Riptortus pedestris[J]. Developmental & Comparative Immunology, 2019, 99: 103399.
    [68] WANG YR, HAN LJ, XIA YX, XIE JQ. The entomopathogenic fungus Metarhizium anisopliae affects feeding preference of Sogatella furcifera and its potential targets’ identification[J]. Journal of Fungi, 2022, 8(5): 506.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王争艳,常珍珍,雍晗紫,赵亚茹. 共生微生物对昆虫化学感受的影响[J]. 微生物学报, 2023, 63(7): 2552-2562

复制
分享
文章指标
  • 点击次数:340
  • 下载次数: 1201
  • HTML阅读次数: 1259
  • 引用次数: 0
历史
  • 收稿日期:2022-10-25
  • 最后修改日期:2023-02-02
  • 在线发布日期: 2023-07-05
  • 出版日期: 2023-07-04
文章二维码