cGAS/STING通路的生物学功能及其在细菌感染中的作用
作者:
基金项目:

河南省自然科学基金(232300421263);河南科技大学博士启动基金(13480104);国家自然科学基金(31572489)


Biological function of cGAS/STING pathway and its role in bacterial infection
Author:
  • CHEN Songbiao

    CHEN Songbiao

    Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471003, Henan, China;Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, Henan, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • SHANG Ke

    SHANG Ke

    Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471003, Henan, China;Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, Henan, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHANG Chunjie

    ZHANG Chunjie

    Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471003, Henan, China;Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, Henan, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • DING Ke

    DING Ke

    Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471003, Henan, China;Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, Henan, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHENG Xiangchao

    CHENG Xiangchao

    Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471003, Henan, China;Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, Henan, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [78]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    先天免疫是宿主抵御外来病原体入侵的第一道防线,而模式识别受体(pattern recognition receptors, PRRs)是介导先天免疫应答关键分子。PRRs通过识别病原体相关分子模式(pathogen associated molecular patterns, PAMPs)来激活宿主先天免疫反应。二十一世纪先天免疫领域里程碑式发现-环磷酸鸟苷腺苷合成酶(cyclic GMP-AMP synthase, cGAS),cGAS在宿主先天免疫过程中发挥重要作用,通过识别外源DNA产生第二信使2′,3′-环化鸟苷酸腺苷酸(2′,3′-cyclic guanosine monophosphate adenosine monophosphate, 2′,3′-cGAMP)来介导干扰素基因刺激因子(stimulator of interferon genes, STING)的活化,从而促进下游干扰素(IFN)和其他细胞因子分泌来发挥宿主的抗病毒反应。近年研究发现,cGAS/STING通路在宿主抗细菌感染过程中发挥着重要作用,同时细菌也进化出不同机制来拮抗cGAS/STING通路。本文主要对cGAS/STING通路的生物学功能及其在细菌感染中的作用进行综述,为进一步研发新型抗菌药物提供理论参考。

    Abstract:

    Innate immunity is the first line of the host against invasion of foreign pathogens, and pattern recognition receptors (PRRs) are key receptors mediating innate immune response. PRRs activate the innate immune response of the host by recognizing pathogen associated molecular patterns (PAMPs). Among them, there is a milestone discovery in the field of DNA recognition and innate immunity in the 21st century—cyclic GMP-AMP synthase (cGAS), which plays an important role in the host innate immune process. cGAS mediates the activation of stimulator of interferon genes (STING) by recognizing foreign DNA and producing a second messenger 2′,3′-cyclic GMP-AMP (2′,3′-cGAMP), thus promoting the secretion of downstream interferon and other cytokines to play an antiviral role in the host. Recent studies have found that the cGAS/STING pathway plays an important role in the host’s resistance to bacterial infection. Meanwhile, bacteria have also evolved different mechanisms to antagonize the cGAS/STING pathway. This paper mainly reviewed the biological functions of the cGAS/STING pathway and its role in bacterial infection, providing theoretical references for the further development of new antibacterial drugs.

    参考文献
    [1] CARTY M, GUY C, BOWIE AG. Detection of viral infections by innate immunity[J]. Biochemical Pharmacology, 2021, 183: 114316.
    [2] 张艳, 董娇娇, 李怡, 窦永喜, 翟军军. DNA病毒与cGAS-STING通路相互作用的新进展[J]. 中国兽医科学, 2021, 51(10): 1316-1322. ZHANG Y, DONG JJ, LI Y, DOU YX, ZHAI JJ. Research progress in the interaction between DNA virus and cGAS-STING signaling pathway[J]. Chinese Veterinary Science, 2021, 51(10): 1316-1322 (in Chinese).
    [3] SUN LJ, WU JX, DU FH, CHEN X, CHEN ZJ. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway[J]. Science, 2013, 339(6121): 786-791.
    [4] WU JX, SUN LJ, CHEN X, DU FH, SHI HP, CHEN C, CHEN ZJ. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA[J]. Science, 2013, 339(6121): 826-830.
    [5] ISHIKAWA H, BARBER GN. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling[J]. Nature, 2008, 455(7213): 674-678.
    [6] ZHONG B, YANG Y, LI S, WANG YY, LI Y, DIAO FC, LEI CQ, HE X, ZHANG L, PO TE, SHU HB. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation[J]. Immunity, 2008, 29(4): 538-550.
    [7] SUN WX, LI Y, CHEN L, CHEN HH, YOU FP, ZHOU X, ZHOU Y, ZHAI ZH, CHEN DY, JIANG ZF. ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(21): 8653-8658.
    [8] LIU NX, PANG XX, ZHANG H, JI P. The cGAS-STING pathway in bacterial infection and bacterial immunity[J]. Frontiers in Immunology, 2021, 12: 814709.
    [9] XU L, LI MY, YANG YD, ZHANG C, XIE Z, TANG JJ, SHI ZK, CHEN SK, LI GZ, GU YC, WANG X, ZHANG FH, WANG Y, SHEN XH. Salmonella induces the cGAS-STING-dependent type I interferon response in murine macrophages by triggering mtDNA release[J]. mBio, 2022, 13(3): e0363221.
    [10] 陈柠, 朱俊萍, 何秋水. cGAS-STING通路在细菌感染中的作用[J]. 微生物学免疫学进展, 2018, 46(1): 49-55. CHEN N, ZHU JP, HE QS. Progress on the role of cGAS-STING pathway in bacterial infections[J]. Progress in Microbiology and Immunology, 2018, 46(1): 49-55 (in Chinese).
    [11] GAO DX, WU JX, WU YT, DU FH, AROH C, YAN N, SUN LJ, CHEN ZJ. Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses[J]. Science, 2013, 341(6148): 903-906.
    [12] SHANG MD, LU K, GUAN WL, CAO SJ, REN MT, ZHOU CZ. 2',3'-cyclic GMP-AMP dinucleotides for STING-mediated immune modulation: principles, immunotherapeutic potential, and synthesis[J]. ChemMedChem, 2022, 17(2): e202100671.
    [13] ZHANG Q, CHEN C, XIA B, XU PL. Chemical regulation of the cGAS-STING pathway[J]. Current Opinion in Chemical Biology, 2022, 69: 102170.
    [14] GAO P, ASCANO M, WU Y, BARCHET W, GAFFNEY BL, ZILLINGER T, SERGANOV AA, LIU YZ, JONES RA, HARTMANN G, TUSCHL T, PATEL DJ. Cyclic[G(2',5')pA(3',5')p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase[J]. Cell, 2013, 153(5): 1094-1107.
    [15] ZHANG XW, BAI XC, CHEN ZJ. Structures and mechanisms in the cGAS-STING innate immunity pathway[J]. Immunity, 2020, 53(1): 43-53.
    [16] DING CY, SONG ZL, SHEN AC, CHEN TT, ZHANG A. Small molecules targeting the innate immune cGAS-STING-TBK1 signaling pathway[J]. Acta Pharmaceutica Sinica B, 2020, 10(12): 2272-2298.
    [17] KRANZUSCH PJ. cGAS and CD-NTase enzymes: structure, mechanism, and evolution[J]. Current Opinion in Structural Biology, 2019, 59: 178-187.
    [18] CIVRIL F, DEIMLING T, de OLIVEIRA MANN CC, ABLASSER A, MOLDT M, WITTE G, HORNUNG V, HOPFNER KP. Structural mechanism of cytosolic DNA sensing by cGAS[J]. Nature, 2013, 498(7454): 332-337.
    [19] LI X, SHU C, YI GH, CHATON CT, SHELTON CL, DIAO JS, ZUO XB, KAO CC, HERR AB, LI PW. Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization[J]. Immunity, 2013, 39(6): 1019-1031.
    [20] KATO K, ISHII R, GOTO E, ISHITANI R, TOKUNAGA F, NUREKI O. Structural and functional analyses of DNA-sensing and immune activation by human cGAS[J]. PLoS One, 2013, 8(10): e76983.
    [21] ZHANG X, WU JX, DU FH, XU H, SUN LJ, CHEN Z, BRAUTIGAM CA, ZHANG XW, CHEN ZJ. The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop[J]. Cell Reports, 2014, 6(3): 421-430.
    [22] MANKAN AK, SCHMIDT T, CHAUHAN D, GOLDECK M, HÖNING K, GAIDT M, KUBARENKO AV, ANDREEVA L, HOPFNER KP, HORNUNG V. Cytosolic RNA: DNA hybrids activate the cGAS-STING axis[J]. The EMBO Journal, 2014, 33(24): 2937-2946.
    [23] HALL J, RALPH EC, SHANKER S, WANG H, BYRNES LJ, HORST R, WONG J, BRAULT A, DUMLAO D, SMITH JF, DAKIN LA, SCHMITT DC, TRUJILLO J, VINCENT F, GRIFFOR M, AULABAUGH AE. The catalytic mechanism of cyclic GMP-AMP synthase (cGAS) and implications for innate immunity and inhibition[J]. Protein Science: a Publication of the Protein Society, 2017, 26(12): 2367-2380.
    [24] HERTZOG J, REHWINKEL J. Regulation and inhibition of the DNA sensor cGAS[J]. EMBO Reports, 2020, 21(12): e51345.
    [25] SHI HP, WU JX, CHEN ZJ, CHEN C. Molecular basis for the specific recognition of the metazoan cyclic GMP-AMP by the innate immune adaptor protein STING[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(29): 8947-8952.
    [26] ANDREEVA L, HILLER B, KOSTREWA D, LÄSSIG C, de OLIVEIRA MANN CC, JAN DREXLER D, MAISER A, GAIDT M, LEONHARDT H, HORNUNG V, HOPFNER KP. cGAS senses long and HMGB/TFAM-bound U-turn DNA by forming protein-DNA ladders[J]. Nature, 2017, 549(7672): 394-398.
    [27] HERZNER AM, HAGMANN CA, GOLDECK M, WOLTER S, KÜBLER K, WITTMANN S, GRAMBERG T, ANDREEVA L, HOPFNER KP, MERTENS C, ZILLINGER T, JIN TC, XIAO TS, BARTOK E, COCH C, ACKERMANN D, HORNUNG V, LUDWIG J, BARCHET W, HARTMANN G, et al. Sequence-specific activation of the DNA sensor cGAS by Y-form DNA structures as found in primary HIV-1 cDNA[J]. Nature Immunology, 2015, 16(10): 1025-1033.
    [28] ZHOU W, WHITELEY AT, de OLIVEIRA MANN CC, MOREHOUSE BR, NOWAK RP, FISCHER ES, GRAY NS, MEKALANOS JJ, KRANZUSCH PJ. Structure of the human cGAS-DNA complex reveals enhanced control of immune surveillance[J]. Cell, 2018, 174(2): 300-311.e11.
    [29] 周萍萍, 王涛, 孙元, 仇华吉. cGAS-STING信号通路: 免疫监视的重要机制[J]. 微生物学报, 2021, 61(7): 1882-1895. ZHOU PP, WANG T, SUN Y, QIU HJ. cGAS-STING signaling pathway: important mechanisms of immune surveillance[J]. Acta Microbiologica Sinica, 2021, 61(7): 1882-1895 (in Chinese).
    [30] SEO GJ, YANG A, TAN B, KIM S, LIANG QM, CHOI Y, YUAN WM, FENG PH, PARK HS, JUNG JU. Akt kinase-mediated checkpoint of cGAS DNA sensing pathway[J]. Cell Reports, 2015, 13(2): 440-449.
    [31] XIA PY, YE BQ, WANG S, ZHU XX, DU Y, XIONG Z, TIAN Y, FAN ZS. Glutamylation of the DNA sensor cGAS regulates its binding and synthase activity in antiviral immunity[J]. Nature Immunology, 2016, 17(4): 369-378.
    [32] 马瑞仙, 李向茸, 冯若飞. STING的免疫调控作用研究进展[J]. 中国预防兽医学报, 2019, 41(12): 1285-1288. MA RX, LI XR, FENG RF. Progress in research on immune regulation of STING[J]. Chinese Journal of Preventive Veterinary Medicine, 2019, 41(12): 1285-1288 (in Chinese).
    [33] SHANG GJ, ZHU DY, LI N, ZHANG JB, ZHU CY, LU DF, LIU CL, YU Q, ZHAO YY, XU SJ, GU LC. Crystal structures of STING protein reveal basis for recognition of cyclic di-GMP[J]. Nature Structural & Molecular Biology, 2012, 19(7): 725-727.
    [34] SHANG GJ, ZHANG CG, CHEN ZJ, BAI XC, ZHANG XW. Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP-AMP[J]. Nature, 2019, 567(7748): 389-393.
    [35] GAO P, ASCANO M, ZILLINGER T, WANG WY, DAI PH, SERGANOV AA, GAFFNEY BL, SHUMAN S, JONES RA, DENG L, HARTMANN G, BARCHET W, TUSCHL T, PATEL DJ. Structure-function analysis of STING activation by c[G(2',5')pA(3',5')p] and targeting by antiviral DMXAA[J]. Cell, 2013, 154(4): 748-762.
    [36] ISHIKAWA H, MA Z, BARBER GN. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity[J]. Nature, 2009, 461(7265): 788-792.
    [37] SAITOH T, FUJITA N, HAYASHI T, TAKAHARA K, SATOH T, LEE HN, MATSUNAGA K, KAGEYAMA S, OMORI H, NODA T, YAMAMOTO N, KAWAI T, ISHII K, TAKEUCHI O, YOSHIMORI T, AKIRA S. Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(49): 20842-20846.
    [38] LIU SQ, CAI X, WU JX, CONG Q, CHEN X, LI T, DU FH, REN JY, WU YT, GRISHIN NV, CHEN ZJ. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation[J]. Science, 2015, 347(6227): aaa2630.
    [39] ABE T, HARASHIMA A, XIA TL, KONNO H, KONNO K, MORALES A, AHN J, GUTMAN D, BARBER GN. STING recognition of cytoplasmic DNA instigates cellular defense[J]. Molecular Cell, 2013, 50(1): 5-15.
    [40] TSUCHIDA T, ZOU J, SAITOH T, KUMAR H, ABE T, MATSUURA Y, KAWAI T, AKIRA S. The ubiquitin ligase TRIM56 regulates innate immune responses to intracellular double-stranded DNA[J]. Immunity, 2010, 33(5): 765-776.
    [41] ZHONG B, ZHANG L, LEI CQ, LI Y, MAO AP, YANG Y, WANG YY, ZHANG XL, SHU HB. The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA[J]. Immunity, 2009, 30(3): 397-407.
    [42] MA Z, DAMANIA B. The cGAS-STING defense pathway and its counteraction by viruses[J]. Cell Host & Microbe, 2016, 19(2): 150-158.
    [43] XIAO TS, FITZGERALD KA. The cGAS-STING pathway for DNA sensing[J]. Molecular Cell, 2013, 51(2): 135-139.
    [44] ZEVINI A, OLAGNIER D, HISCOTT J. Crosstalk between cytoplasmic RIG-I and STING sensing pathways[J]. Trends in Immunology, 2017, 38(3): 194-205.
    [45] ELMANFI S, YILMAZ M, ONG WWS, YEBOAH KS, SINTIM HO, GÜRSOY M, KÖNÖNEN E, GÜRSOY UK. Bacterial cyclic dinucleotides and the cGAS-cGAMP-STING pathway: a role in periodontitis?[J]. Pathogens (Basel, Switzerland), 2021, 10(6): 675.
    [46] JENAL U, REINDERS A, LORI C. Cyclic di-GMP: second messenger extraordinaire[J]. Nature Reviews Microbiology, 2017, 15(5): 271-284.
    [47] WOODWARD JJ, IAVARONE AT, PORTNOY DA. C-di-AMP secreted by intracellular Listeria monocytogenes activates a host type I interferon response[J]. Science, 2010, 328(5986): 1703-1705.
    [48] LIU HP, MOURA-ALVES P, PEI G, MOLLENKOPF HJ, HURWITZ R, WU XY, WANG F, LIU SY, MA MT, FEI YY, ZHU CG, KOEHLER AB, OBERBECK- MUELLER D, HAHNKE K, KLEMM M, GUHLICH-BORNHOF U, GE BX, TUUKKANEN A, KOLBE M, DORHOI A, et al. cGAS facilitates sensing of extracellular cyclic dinucleotides to activate innate immunity[J]. EMBO Reports, 2019, 20(4): e46293.
    [49] ALMINE JF, O’HARE CAJ, DUNPHY G, HAGA IR, NAIK RJ, ATRIH A, CONNOLLY DJ, TAYLOR J, KELSALL IR, BOWIE AG, BEARD PM, UNTERHOLZNER L. IFI16 and cGAS cooperate in the activation of STING during DNA sensing in human keratinocytes[J]. Nature Communications, 2017, 8: 14392.
    [50] ZHOU CM, WANG B, WU Q, LIN P, QIN SG, PU QQ, YU XJ, WU M. Identification of cGAS as an innate immune sensor of extracellular bacterium Pseudomonas aeruginosa[J]. iScience, 2021, 24(1): 101928.
    [51] HANSEN K, PRABAKARAN T, LAUSTSEN A, JØRGENSEN SE, RAHBÆK SH, JENSEN SB, NIELSEN R, LEBER JH, DECKER T, HORAN KA, JAKOBSEN MR, PALUDAN SR. Listeria monocytogenes induces IFNβ expression through an IFI16-, cGAS- and STING-dependent pathway[J]. The EMBO Journal, 2014, 33(15): 1654-1666.
    [52] SCUMPIA PO, BOTTEN GA, NORMAN JS, KELLY-SCUMPIA KM, SPREAFICO R, RUCCIA AR, PURBEY PK, THOMAS BJ, MODLIN RL, SMALE ST. Opposing roles of Toll-like receptor and cytosolic DNA-STING signaling pathways for Staphylococcus aureus cutaneous host defense[J]. PLoS Pathogens, 2017, 13(7): e1006496.
    [53] GRIES CM, BRUGER EL, MOORMEIER DE, SCHERR TD, WATERS CM, KIELIAN T. Cyclic di-AMP released from Staphylococcus aureus biofilm induces a macrophage type I interferon response[J]. Infection and Immunity, 2016, 84(12): 3564-3574.
    [54] LOUIE A, BHANDULA V, PORTNOY DA. Secretion of c-di-AMP by Listeria monocytogenes leads to a STING-dependent antibacterial response during enterocolitis[J]. Infection and Immunity, 2020, 88(12): e00407-e00420.
    [55] HU XX, PENG XQ, LU C, ZHANG XM, GAN LL, GAO Y, YANG SH, XU WC, WANG J, YIN YB, WANG H. Type I IFN expression is stimulated by cytosolic MtDNA released from pneumolysin-damaged mitochondria via the STING signaling pathway in macrophages[J]. The FEBS Journal, 2019, 286(23): 4754-4768.
    [56] COSTA FRANCO MM, MARIM F, GUIMARÃES ES, ASSIS NRG, CERQUEIRA DM, ALVES-SILVA J, HARMS J, SPLITTER G, SMITH J, KANNEGANTI TD, de QUEIROZ NMGP, GUTMAN D, BARBER GN, OLIVEIRA SC. Brucella abortus triggers a cGAS-independent STING pathway to induce host protection that involves guanylate-binding proteins and inflammasome activation[J]. Journal of Immunology (Baltimore, Md: 1950), 2018, 200(2): 607-622.
    [57] de FIGUEIREDO P, FICHT TA, RICE-FICHT A, ROSSETTI CA, ADAMS LG. Pathogenesis and immunobiology of brucellosis: review of Brucella-host interactions[J]. The American Journal of Pathology, 2015, 185(6): 1505-1517.
    [58] GRATZ N, HARTWEGER H, MATT U, KRATOCHVILL F, JANOS M, SIGEL S, DROBITS B, LI XD, KNAPP S, KOVARIK P. Type I interferon production induced by Streptococcus pyogenes-derived nucleic acids is required for host protection[J]. PLoS Pathogens, 2011, 7(5): e1001345.
    [59] MOVERT E, LIENARD J, VALFRIDSSON C, NORDSTRÖM T, JOHANSSON-LINDBOM B, CARLSSON F. Streptococcal M protein promotes IL-10 production by cGAS-independent activation of the STING signaling pathway[J]. PLoS Pathogens, 2018, 14(3): e1006969.
    [60] DODANTENNA N, RANATHUNGA L, CHATHURANGA WAG, WEERAWARDHANA A, CHA JW, SUBASINGHE A, GAMAGE N, HALUWANA DK, KIM Y, JHEONG W, POO H, LEE JS. African swine fever virus EP364R and C129R target cyclic GMP-AMP to inhibit the cGAS-STING signaling pathway[J]. Journal of Virology, 2022, 96(15): e0102222.
    [61] WANG ZY, CHEN J, WU XC, MA D, ZHANG XH, LI RZ, HAN C, LIU HX, YIN XR, DU Q, TONG DW, HUANG Y. PCV2 targets cGAS to inhibit type I interferon induction to promote other DNA virus infection[J]. PLoS Pathogens, 2021, 17(9): e1009940.
    [62] KONG ZJ, YIN HY, WANG F, LIU Z, LUAN XH, SUN L, LIU WJ, SHANG YL. Pseudorabies virus tegument protein UL13 recruits RNF5 to inhibit STING-mediated antiviral immunity[J]. PLoS Pathogens, 2022, 18(5): e1010544.
    [63] ZHENG WL, XIA NW, ZHANG JJ, CAO Q, JIANG S, LUO J, WANG H, CHEN NH, ZHANG Q, MEURENS F, ZHU JZ. African swine fever virus structural protein p17 inhibits cGAS-STING signaling pathway through interacting with STING[J]. Frontiers in Immunology, 2022, 13: 941579.
    [64] CUI S, WANG Y, GAO XT, XIN T, WANG XX, YU HN, CHEN SY, JIANG YJ, CHEN Q, JIANG F, WANG DY, GUO XY, JIA H, ZHU HF. African swine fever virus M1249L protein antagonizes type I interferon production via suppressing phosphorylation of TBK1 and degrading IRF3[J]. Virus Research, 2022, 319: 198872.
    [65] SUN MW, YU SX, GE HL, WANG T, LI YF, ZHOU PP, PAN L, HAN Y, YANG YY, SUN Y, LI S, LI LF, QIU HJ. The A137R protein of African swine fever virus inhibits type I interferon production via the autophagy-mediated lysosomal degradation of TBK1[J]. Journal of Virology, 2022, 96(9): e0195721.
    [66] KIM BH, SHENOY AR, KUMAR P, BRADFIELD CJ, MacMICKING JD. IFN-inducible GTPases in host cell defense[J]. Cell Host & Microbe, 2012, 12(4): 432-444.
    [67] MAN SM, PLACE DE, KURIAKOSE T, KANNEGANTI TD. Interferon-inducible guanylate-binding proteins at the interface of cell-autonomous immunity and inflammasome activation[J]. Journal of Leukocyte Biology, 2017, 101(1): 143-150.
    [68] FENG SY, MAN SM. Captain GBP1: inflammasomes assemble, pyroptotic endgame[J]. Nature Immunology, 2020, 21(8): 829-830.
    [69] WANDEL MP, KIM BH, PARK ES, BOYLE KB, NAYAK K, LAGRANGE B, HEROD A, HENRY T, ZILBAUER M, ROHDE J, MacMICKING JD, RANDOW F. Guanylate-binding proteins convert cytosolic bacteria into caspase-4 signaling platforms[J]. Nature Immunology, 2020, 21(8): 880-891.
    [70] JI CG, DU S, LI P, ZHU QY, YANG XK, LONG CH, YU J, SHAO F, XIAO JY. Structural mechanism for guanylate-binding proteins (GBPs) targeting by the Shigella E3 ligase IpaH9.8[J]. PLoS Pathogens, 2019, 15(6): e1007876.
    [71] LI P, JIANG W, YU Q, LIU W, ZHOU P, LI J, XU JJ, XU B, WANG FC, SHAO F. Ubiquitination and degradation of GBPs by a Shigella effector to suppress host defence[J]. Nature, 2017, 551(7680): 378-383.
    [72] WANDEL MP, PATHE C, WERNER EI, ELLISON CJ, BOYLE KB, von der MALSBURG A, ROHDE J, RANDOW F. GBPs inhibit motility of Shigella flexneri but are targeted for degradation by the bacterial ubiquitin ligase IpaH9.8[J]. Cell Host & Microbe, 2017, 22(4): 507-518.e5.
    [73] CAO SY, JIAO Y, JIANG W, WU YR, QIN S, REN YF, YOU Y, TAN YF, GUO X, CHEN HY, ZHANG Y, WU GS, WANG T, ZHOU YZ, SONG YJ, CUI YJ, SHAO F, YANG RF, DU ZM. Subversion of GBP-mediated host defense by E3 ligases acquired during Yersinia pestis evolution[J]. Nature Communications, 2022, 13: 4526.
    [74] LIU BC, SARHAN J, PANDA A, MUENDLEIN HI, ILYUKHA V, COERS J, YAMAMOTO M, ISBERG RR, POLTORAK A. Constitutive interferon maintains GBP expression required for release of bacterial components upstream of pyroptosis and anti-DNA responses[J]. Cell Reports, 2018, 24(1): 155-168.e5.
    [75] LI RZ, LIU WL, YIN XR, ZHENG FF, WANG ZY, WU XC, ZHANG XH, DU Q, HUANG Y, TONG DW. Brucella spp. Omp25 promotes proteasome-mediated cGAS degradation to attenuate IFN-β production[J]. Frontiers in Microbiology, 2021, 12: 702881.
    [76] ANDRADE WA, FIRON A, SCHMIDT T, HORNUNG V, FITZGERALD KA, KURT-JONES EA, TRIEU-CUOT P, GOLENBOCK DT, KAMINSKI PA. Group B Streptococcus degrades cyclic-di-AMP to modulate STING-dependent type I interferon production[J]. Cell Host & Microbe, 2016, 20(1): 49-59.
    [77] 李瑞珍. 布鲁氏菌Omp25、RicA和BspB抑制cGAS-STING通路活化的分子机制研究[D]. 杨凌: 西北农林科技大学博士学位论文, 2022. LI RZ. Molecular mechanism inhibited the activation of cGas-STING pathway by Brucella Omp25, RicA and BspB[D]. Yangling: Doctoral Dissertation of Northwest A&F University, 2022 (in Chinese).
    [78] CHEN SB, CHEN NN, MIAO BC, PENG J, ZHANG XZ, CHEN CY, ZHANG XJ, CHANG LL, DU Q, HUANG Y, TONG DW. Coatomer protein COPƐ, a novel NS1-interacting protein, promotes the replication of porcine parvovirus via attenuation of the production of type I interferon[J]. Veterinary Microbiology, 2021, 261: 109188.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈松彪,尚珂,张春杰,丁轲,程相朝. cGAS/STING通路的生物学功能及其在细菌感染中的作用[J]. 微生物学报, 2023, 63(7): 2595-2608

复制
分享
文章指标
  • 点击次数:460
  • 下载次数: 1232
  • HTML阅读次数: 1496
  • 引用次数: 0
历史
  • 收稿日期:2022-11-15
  • 最后修改日期:2023-01-11
  • 在线发布日期: 2023-07-05
  • 出版日期: 2023-07-04
文章二维码