基于基质辅助激光解吸/电离飞行时间质谱的猪呼吸道病毒多目标鉴定方法的建立和应用
作者:
基金项目:

国家重点研发计划(2021YFF0602800);浙江省重点研发计划(2021C02060);海关总署科技计划项目(2021HK159)


Establishment and application of a multi-target detection method for porcine respiratory viruses based on MALDI-TOF MS
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    【目的】建立能高效同步鉴定猪伪狂犬病毒(porcine pseudorabies virus, PRV)、猪圆环病毒2型(porcine circovirus 2, PCV-2)和3型(porcine circovirus 3, PCV-3)、非洲猪瘟病毒(African swine fever virus, ASFV)以及猪博卡病毒1型(porcine bocavirus group 1, PBoV-G1)、2型(porcine bocavirus group 2, PBoV-G2)和3型(porcine bocavirus group 3, PBoV-G3)等呼吸道病毒的核酸基质辅助激光解吸/电离飞行时间质谱(matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, MALDI-TOF MS)高通量多目标检测技术。【方法】根据7种病原体基因的保守序列,分别设计不同病原的引物及对应的单碱基延伸探针,通过引物浓度和反应条件优化,方法特异性、敏感性和稳定性分析,以及临床样本和猪源产制品的检测验证,建立常见猪呼吸道DNA病毒的MALDI-TOF MS多目标检测体系。【结果】质谱分析显示,多目标检测体系的7种靶标产物峰只在特定病毒阳性样品检测时产生,与其他病原体检测无交叉反应,表明该方法对7种靶标病毒检测特异性良好。重复性试验结果分析显示,体系中每种病毒在高、中、低浓度时批内阳性符合率均≥98.0%,批间均≥98.3%,表明该方法具有较高的稳定性。体系中7种病原体每种病毒最低检测限在8.65-26.27拷贝/μL之间,与荧光PCR (real-time fluorescence quantitative PCR, RT-qPCR)检测方法相当。采用MALDI-TOF MS多重检测方法对100份组织、饲料和猪肉样品进行检测应用,检出2种及以上混合感染样品39份,其中5份样本同步检出5种病原体阳性;对8份ASFV-p72假病毒人工污染样品进行验证,均可检出ASFV阳性。将以上样本检测应用结果与荧光PCR方法进行比对验证,2种方法对于不同病原体检测结果的符合率高达94.4%-100%。【结论】本研究建立的基于MALDI-TOF MS的猪呼吸道常见DNA病毒多重检测方法为猪群相关疫病快速监测和鉴别诊断,以及便利化进出口动物检疫等提供了一种新的敏感、特异的高通量多目标检测技术。

    Abstract:

    [Objective] To establish a high-throughput multi-target technique based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the detection of porcine pseudorabies virus (PRV), porcine circovirus types 2 (PCV-2) and 3 (PCV-3), African swine fever virus (ASFV), and porcine bocavirus group 1 (PBoV-G1), group 2 (PBoV-G2) and group 3 (PBoV-G3). [Methods] The primers for different pathogens and corresponding single-base extension probes were designed based on the conserved sequences in the genes of the seven pathogens. After the optimization of primer concentrations and reaction conditions, the specificity, sensitivity, and repeatability of the method were analyzed. Finally, this MALDI-TOF MS method was used to detect the pathogens in clinical samples and porcine products. [Results] The established method only produced target peaks in the detection of specific virus-positive samples, and there was no cross-reaction with other pathogens, which indicated that the method had good specificity for the detection of the seven target viruses. The repeatability test results showed that the positive coincidence rate of each virus in high, medium, and low concentrations was ≥98.0% within batches and ≥98.3% between batches, indicating that the method had high repeatability. The low limits of detection of the established method for the seven pathogens in the system were within the range of 8.65-26.27 copies/μL, which was comparable to that of the real-time fluorescence quantitative PCR (RT-qPCR). The established MALDI-TOF MS method was used to detect 100 tissue, feed, and pork samples, in which 39 samples were detected with two or more mixed infections, including five samples simultaneously positive for five pathogens. In addition, eight samples of artificial contamination with recombinant adenovirus carrying ASFV-p72 gene were tested, which showed ASFV-positive results. The coincidence rates of the results obtained by MALDI-TOF MS and RT-qPCR for the detection of different pathogens were as high as 94.4%-100%. [Conclusion] The method established based on MALDI-TOF MS for the detection of multiple porcine respiratory DNA viruses in this study provides a sensitive, specific, high-throughput and multi-target detection technique for rapid surveillance and differential diagnosis of porcine diseases, facilitating the import and export animal quarantine.

    参考文献
    [1] 王颢然, 高利, 高翔, 肖建华. 2008–2018年我国猪流行性腹泻病毒混合感染分析[J]. 中国动物传染病学报, 2020, 28(3): 97-103. WANG HR, GAO L, GAO X, XIAO JH. Analysis of mixed infections of porcine epidemic diarrhea virus with other pathogens from 2008 to 2018 in China[J]. Chinese Journal of Animal Infectious Diseases, 2020, 28(3): 97-103 (in Chinese).
    [2] 张丽, 罗玉子, 王涛, 孙元, 仇华吉. 非洲猪瘟诊断技术发展现状与需求分析[J]. 中国农业科技导报, 2019, 21(9): 1-11. ZHANG L, LUO YZ, WANG T, SUN Y, QIU HJ. Current progress and demand analysis of diagnostic technologies for African swine fever[J]. Journal of Agricultural Science and Technology, 2019, 21(9): 1-11 (in Chinese).
    [3] 中国核酸质谱应用专家共识协作组. 中国核酸质谱应用专家共识[J]. 中华医学杂志, 2018, 98(12): 895-900. Chinese Expert Consensus Group on the Application of MALDI-TOF MS. Chinese expert consensus on application of MALDI-TOF MS[J]. National Medical Journal of China, 2018, 98(12): 895-900 (in Chinese).
    [4] SINGHAL N, KUMAR M, KANAUJIA PK, VIRDI JS. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis[J]. Frontiers in Microbiology, 2015, 6: 791.
    [5] CLARK AE, KALETA EJ, ARORA A, WOLK DM. Matrix-assisted laser desorption ionization-time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology[J]. Clinical Microbiology Reviews, 2013, 26(3): 547-603.
    [6] ZHANG C, XIU LS, XIAO Y, XIE ZD, REN LL, PENG JP. Simultaneous detection of key bacterial pathogens related to pneumonia and meningitis using multiplex PCR coupled with mass spectrometry[J]. Frontiers in Cellular and Infection Microbiology, 2018, 8: 107.
    [7] TREMBIZKI E, SMITH H, LAHRA MM, CHEN M, DONOVAN B, FAIRLEY CK, GUY R, KALDOR J, REGAN D, WARD J, NISSEN MD, SLOOTS TP, WHILEY DM. High-throughput informative single nucleotide polymorphism-based typing of Neisseria gonorrhoeae using the Sequenom MassARRAY iPLEX platform[J]. Journal of Antimicrobial Chemotherapy, 2014, 69(6): 1526-1532.
    [8] 王立琴, 张驰, 李晓东, 彭俊平. MALDI-TOF MS技术在传染病诊断中的应用进展[J]. 中国科学: 生命科学, 2022, 52. WANG LQ, ZHANG C, LI XD, PENG JP. Progress in applications of MALDI-TOF MS technology in the diagnosis of infectious diseases[J]. Scientia Sinica Vitae, 2022, 52 (in Chinese).
    [9] LIU TT, KANG L, LI YW, HUANG J, GUO ZS, XU JL, HU Y, ZHAI ZX, KANG XP, JIANG T, LI H, SONG HX, WANG J, GAO S, LI JX, ZHOU XG, YUAN Y, ZHAO BH, WANG JL, XIN WW. Simultaneous detection of seven human coronaviruses by multiplex PCR and MALDI-TOF MS[J]. COVID, 2021, 2(1): 5-17.
    [10] 刘宏钱, 宋朝晖, 梁巧米. 多重RT-PCR MassARRAY技术检测27种呼吸道病原体方法的建立和临床应用评价[J]. 检验医学, 2021, 36(9): 939-946. LIU HQ, SONG CH, LIANG QM. Establishment and clinical application of multiple RT-PCR Mass ARRAY for the determinations of 27 respiratory pathogens[J]. Laboratory Medicine, 2021, 36(9): 939-946 (in Chinese).
    [11] LIU N, WANG L, CAI GZ, ZHANG DB, LIN JH. Establishment of a simultaneous detection method for ten duck viruses using MALDI-TOF mass spectrometry[J]. Journal of Virological Methods, 2019, 273: 113723.
    [12] JIANG YH, XIAO CT, YIN SH, GERBER PF, HALBUR PG, OPRIESSNIG T. High prevalence and genetic diversity of porcine bocaviruses in pigs in the USA, and identification of multiple novel porcine bocaviruses[J]. The Journal of General Virology, 2014, 95(Pt 2): 453-465.
    [13] 覃绍敏, 吴健敏, 马琳, 袁龙, 陈凤莲, 马玲, 白安斌. 猪博卡病毒全基因组序列分析与基因分型研究[J]. 中国预防兽医学报, 2014, 36(2): 150-153. QIN SM, WU JM, MA L, YUAN L, CHEN FL, MA L, BAI AB. Analysis of complete genomic characterization and the genotyping classification of porcine Bocaviruses[J]. Chinese Journal of Preventive Veterinary Medicine, 2014, 36(2): 150-153 (in Chinese).
    [14] 杨汉春, 周磊, 高元元, 白光烨. 2019年猪病流行情况与2020年流行趋势及防控对策[J]. 猪业科学, 2020, 37(2): 52-54. YANG HC, ZHOU L, GAO YY, BAI GY. Overview of swine diseases prevalence in 2019, epidemic tendency and control strategy in 2020[J]. Swine Industry Science, 2020, 37(2): 52-54 (in Chinese).
    [15] 官昭瑛, 李慧敏, 何曼文, 余展旺. 多重PCR技术在快速检测中的应用[J]. 山东化工, 2021, 50(3): 85-88. GUAN ZY, LI HM, HE MW, YU ZW. Application of multiplex PCR technology in rapid detection[J]. Shandong Chemical Industry, 2021, 50(3): 85-88 (in Chinese).
    [16] 张平平, 王浩然, 郭兆彪, 杨瑞馥, 周蕾. 多重生物检测技术研究进展[J]. 军事医学, 2012, 36(9): 713-717. ZHANG PP, WANG HR, GUO ZB, YANG RF, ZHOU L. Advances in research on multiple biological detecting technologies[J]. Military Medical Sciences, 2012, 36(9): 713-717 (in Chinese).
    [17] JURINKE C, OETH P, van den BOOM D. MALDI-TOF mass spectrometry[J]. Molecular Biotechnology, 2004, 26(2): 147-163.
    [18] DOELLINGER J, SCHROEDER K, WITT N, HEUNEMANN C, NITSCHE A. Comparison of real-time PCR and MassTag PCR for the multiplex detection of highly pathogenic agents[J]. Molecular and Cellular Probes, 2012, 26(5): 177-181.
    [19] 訾占超, 夏应菊, 韩雪, 汪葆玥, 遇秀玲, 翟新验, 田克恭, 倪建强. 2009年我国部分猪群输血传播病毒感染情况调查[J]. 中国预防兽医学报, 2011, 33(10): 759-762. ZI ZC, XIA YJ, HAN X, WANG BY, YU XL, ZHAI XY, TIAN KG, NI JQ. Prevalence of Torque teno virus in China swine herds in 2009[J]. Chinese Journal of Preventive Veterinary Medicine, 2011, 33(10): 759-762 (in Chinese).
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

宋士琦,裘慧,陈吴健,莫虹斐,金晨晨,曾若雪,王巍,郭惠民,帅江冰,王正亮,张晓峰. 基于基质辅助激光解吸/电离飞行时间质谱的猪呼吸道病毒多目标鉴定方法的建立和应用[J]. 微生物学报, 2023, 63(7): 2713-2727

复制
分享
文章指标
  • 点击次数:238
  • 下载次数: 1044
  • HTML阅读次数: 588
  • 引用次数: 0
历史
  • 收稿日期:2022-10-17
  • 最后修改日期:2022-11-24
  • 在线发布日期: 2023-07-05
  • 出版日期: 2023-07-04
文章二维码