彩虹锹甲不同发育阶段肠道真菌群落特征研究
作者:
基金项目:

国家自然科学基金(31872276,31801989)


Characteristics of gut fungal community at different developmental stages of the rainbow stag beetle Phalacrognathus muelleri (Coleoptera: Lucanidae)
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [46]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】肠道微生物中的真菌群落在宿主生命活动中具有多种功能。锹甲是常见的腐食性甲虫,但目前对其肠道真菌群落的研究较少,本研究分析彩虹锹甲(Phalacrognathus muelleri)不同发育阶段的肠道真菌群落结构和多样性,试图阐明彩虹锹甲在不同发育阶段中肠道真菌群落的特征。【方法】本研究通过高通量测序(Illumina MiSeq)技术对彩虹锹甲不同发育阶段(包括新生幼虫、成熟幼虫、成虫)之间肠道真菌群落结构进行比较研究,分析其α多样性、β多样性和功能预测。【结果】彩虹锹甲肠道优势真菌类群为假丝酵母属(Candida)、Phialocephala、青霉属(Penicillium)、烧瓶状霉属(Lecythophora)。肠道真菌群落组成与多样性在幼虫期和成虫期存在显著差异,成虫与幼虫食性差别可能是导致肠道真菌群落组成和多样性差异的重要原因。功能预测结果显示,幼虫肠道中含有更高的内共生菌多样性与相对丰度,说明幼虫可能更加依赖其肠道有益真菌来获得充分的养分。β零模型结果显示,成虫肠道对其真菌群落具有更强的过滤作用,从而选择特定的肠道真菌类群,导致成虫肠道真菌群落共现网络具有更高的稳定性,增强成虫对环境波动的适应能力。【结论】本研究发现彩虹锹甲不同发育阶段参与食物降解的功能真菌类型不同,幼虫可能对肠道真菌的依赖性更强,而成虫肠道较强的选择作用有助于选择特定真菌类群和保持肠道真菌群落稳定。本研究有助于更好理解锹甲肠道真菌群落的多样性,为开展腐栖甲虫作为生态系统重要功能群的利用与保护提供更多理论参考。

    Abstract:

    [Objective] Gut fungal microorganisms play multiple roles in the life history of their hosts as indispensable part of gut microbiota. Although stag beetles are common saprophytic insects, little is known about their gut fungal community. In this study, we compared the structure and diversity of gut fungi at different developmental stages of the rainbow stag beetle, Phalacrognathus muelleri, aiming to reveal the characteristics of the fungi at different developmental stages of this insect. [Methods] We employed high-throughput sequencing (Illumina MiSeq) to study the gut fungal community structure in the newborn larvae, mature larvae, and adults of P. muelleri. Further, we analyzed alpha and beta diversity and carried out functional prediction for the fungi. [Results] The predominant fungal genera in the gut of P. muelleri were Candida, Phialocephala, Penicillium, and Lecythophora. The composition and diversity of the gut fungal community were significantly different between the larvae and adults, which may be associated with their different diets. The functional prediction showed that endosymbiotic fungi in the larval gut had higher diversity and relative abundance, suggesting that the larvae might depend more on the beneficial fungal taxa in the gut to obtain nutrients. The results of the abundance-based β-null deviation showed that the adult gut exerted a stronger filtering effect to select specific fungal taxa. Thus, the adults might build a more stable co-occurrence network of gut fungal community which supported them to adapt to the environmental fluctuations. [Conclusion] Different groups of functional fungi are involved in the food degradation of P. muelleri at different developmental stages. The larvae may depend more on gut fungi, and the adult gut has strong filtering effect to select specific groups of fungi and maintain the stability of the gut fungal community. Our study enhances our understanding of the gut microbiota of stag beetles, which can aid in the conservation and utilization of these saprophytic beetles as an important functional group in ecosystems.

    参考文献
    [1] DAR MA, SHAIKH AF, PAWAR KD, XIE RR, SUN JZ, KANDASAMY S, PANDIT RS. Evaluation of cellulose degrading bacteria isolated from the gut-system of cotton bollworm, Helicoverpa armigera and their potential values in biomass conversion[J]. PeerJ, 2021, 9: e11254.
    [2] ENGEL P, MORAN NA. The gut microbiota of insects-diversity in structure and function[J]. FEMS Microbiology Reviews, 2013, 37(5): 699-735.
    [3] 周帆, 庞志倡, 余小强, 汪肖云. 昆虫肠道微生物的研究进展和应用前景[J]. 应用昆虫学报, 2020, 57(3): 600-607. ZHOU F, PANG ZC, YU XQ, WANG XY. Insect gut microbiota research: progress and applications[J]. Chinese Journal of Applied Entomology, 2020, 57(3): 600-607 (in Chinese).
    [4] HU X, LI M, RAFFA KF, LUO QY, FU HJ, WU SQ, LIANG GH, WANG R, ZHANG FP. Bacterial communities associated with the pine wilt disease vector Monochamus alternatus (Coleoptera: Cerambycidae) during different larval instars[J]. Journal of Insect Science, 2017, 17(6): 115.
    [5] SOTO-ROBLES LV, TORRES-BANDA V, RIVERA-ORDUÑA FN, CURIEL-QUESADA E, HIDALGO-LARA ME, ZÚÑIGA G. An overview of genes from Cyberlindnera americana, a symbiont yeast isolated from the gut of the bark beetle Dendroctonus rhizophagus (Curculionidae: scolytinae), involved in the detoxification process using genome and transcriptome data[J]. Frontiers in Microbiology, 2019, 10: 2180.
    [6] WANG Y, ROZEN DE. Gut microbiota in the burying beetle, Nicrophorus vespilloides, provide colonization resistance against larval bacterial pathogens[J]. Ecology and Evolution, 2018, 8(3): 1646-1654.
    [7] EBERT KM, ARNOLD WG, EBERT PR, MERRITT DJ. Hindgut microbiota reflects different digestive strategies in dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae)[J]. Applied and Environmental Microbiology, 2021, 87(5): e02100-20.
    [8] SALEM H, KALTENPOTH M. Beetle–bacterial symbioses: endless forms most functional[J]. Annual Review of Entomology, 2022, 67: 201-219.
    [9] 万霞, 杨星科. “锹甲”名称的由来及中国锹甲属的中名问题[J]. 昆虫知识, 2006, 43(3): 418-422, 433. WAN X, YANG XK. Chinese names of “Lucanidae” and genera from China[J]. Chinese Bulletin of Entomology, 2006, 43(3): 418-422, 433 (in Chinese).
    [10] HARVEY DJ, GANGE AC, HAWES CJ, RINK M. Bionomics and distribution of the stag beetle, Lucanus cervus (L.) across Europe[J]. Insect Conservation and Diversity, 2011, 4(1): 23-38.
    [11] TANAHASHI M, KUBOTA K. Utilization of the nutrients in the soluble and insoluble fractions of fungal mycelium by larvae of the stag beetle, Dorcus rectus (Coleoptera: Lucanidae)[J]. European Journal of Entomology, 2013, 110(4): 611-615.
    [12] UEKI G, ZHANG SN, ZHU XUEJ, WEN XJ, TOJO K, KUBOTA K. Lateral transmission of yeast symbionts among lucanid beetle taxa[J]. Frontiers in Microbiology, 2021, 12: 794904.
    [13] MIYASHITA A, HIRAI Y, SEKIMIZU K, KAITO C. Antibiotic-producing bacteria from stag beetle mycangia[J]. Drug Discoveries & Therapeutics, 2015; 9(1): 33-37.
    [14] WAN X, JIANG Y, CAO YY, SUN BH, XIANG XJ. Divergence in gut bacterial community structure between male and female stag beetles Odontolabis fallaciosa (Coleoptera, Lucanidae)[J]. Animals, 2020, 10(12): 2352.
    [15] WANG MM, XIANG XJ, WAN X. Divergence in gut bacterial community among life stages of the rainbow stag beetle Phalacrognathus muelleri (Coleoptera: Lucanidae)[J]. Insects, 2020, 11(10): 719.
    [16] TANAHASHI M, MATSUSHITA N, TOGASHI K. Are stag beetles fungivorous?[J]. Journal of Insect Physiology, 2009, 55(11): 983-988.
    [17] COSTA C, CASARI SA, VANIN SA. Larvas de Coleoptera do Brasil[M]. BR: Museu de Zoologia, 1988.
    [18] MORALES-JIMÉNEZ J, ZÚÑIGA G, RAMÍREZ-SAAD HC, HERNÁNDEZ-RODRÍGUEZ C. Gut-associated bacteria throughout the life cycle of the bark beetle Dendroctonus rhizophagus Thomas and bright (Curculionidae: Scolytinae) and their cellulolytic activities[J]. Microbial Ecology, 2012, 64(1): 268-278.
    [19] DELALIBERA I Jr, HANDELSMAN J, RAFFA KF. Contrasts in cellulolytic activities of gut microorganisms between the wood borer, Saperda vestita (Coleoptera: Cerambycidae), and the bark beetles, Ips pini and Dendroctonus frontalis (Coleoptera: Curculionidae)[J]. Environmental Entomology, 2005, 34(3): 541-547.
    [20] GARDES M, BRUNS TD. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts[J]. Molecular Ecology, 1993, 2(2): 113-118.
    [21] WHITE TJ, BRUNS T, LEE S, TAYLOR J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics[M]//PCR Protocols. Amsterdam: Elsevier, 1990: 315-322.
    [22] CAPORASO JG, KUCZYNSKI J, STOMBAUGH J, BITTINGER K, BUSHMAN FD, COSTELLO EK, FIERER N, PEÑA AG, GOODRICH JK, GORDON JI, HUTTLEY GA, KELLEY ST, KNIGHTS D, KOENIG JE, LEY RE, LOZUPONE CA, McDONALD D, MUEGGE BD, PIRRUNG M, REEDER J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 2010, 7(5): 335-336.
    [23] EDGAR RC. Search and clustering orders of magnitude faster than BLAST[J]. Bioinformatics, 2010, 26(19): 2460-2461.
    [24] XIANG XJ, HE D, HE JS, MYROLD DD, CHU HY. Ammonia-oxidizing bacteria rather than archaea respond to short-term urea amendment in an alpine grassland[J]. Soil Biology and Biochemistry, 2017, 107: 218-225.
    [25] XIANG XJ, GIBBONS SM, LI H, SHEN HH, FANG JY, CHU HY. Shrub encroachment is associated with changes in soil bacterial community composition in a temperate grassland ecosystem[J]. Plant and Soil, 2018, 425(1/2): 539-551.
    [26] SEGATA N, IZARD J, WALDRON L, GEVERS D, MIROPOLSKY L, GARRETT WS, HUTTENHOWER C. Metagenomic biomarker discovery and explanation[J]. Genome Biology, 2011, 12(6): 1-18.
    [27] DIXON P. VEGAN, a package of R functions for community ecology[J]. Journal of Vegetation Science, 2003, 14(6): 927-930.
    [28] NGUYEN NH, SONG ZW, BATES ST, BRANCO S, TEDERSOO L, MENKE J, SCHILLING JS, KENNEDY PG. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild[J]. Fungal Ecology, 2016, 20: 241-248.
    [29] BASTIAN M, HEYMANN S, JACOMY M. Gephi: an open source software for exploring and manipulating networks[J]. Proceedings of the International AAAI Conference on Web and Social Media, 2009, 3(1): 361-362.
    [30] ELENA PÉREZ-COBAS A, MAIQUES E, ANGELOVA A, CARRASCO P, MOYA A, LATORRE A. Diet shapes the gut microbiota of the omnivorous cockroach Blattella germanica[J]. FEMS Microbiology Ecology, 2015, 91(4): fiv022.
    [31] 郭琼钰. 橘小实蝇肠道真菌多样性及其对宿主的益生作用[D]. 武汉: 华中农业大学硕士学位论文, 2021. GUO QY. Diversity of the intestinal fungi in Bactrocera dorsalis and its probiotic effects on the host[D]. Wuhan: Master’s Thesis of Huazhong Agricultural University, 2021 (in Chinese).
    [32] KHAN Z, GENÉ J, AHMAD S, CANO J, AL-SWEIH N, JOSEPH L, CHANDY R, GUARRO J. Coniochaeta polymorpha, a new species from endotracheal aspirate of a preterm neonate, and transfer of Lecythophora species to Coniochaeta[J]. Antonie Van Leeuwenhoek, 2013, 104(2): 243-252.
    [33] PRASANNA HN, RAMANJANEYULU G, RAJASEKHAR REDDY B. Optimization of cellulase production by Penicillium sp.[J]. 3 Biotech, 2016, 6(2): 1-11.
    [34] 胡霞. 华山松大小蠹肠道微生物群落多样性与幼虫肠道纤维素降解菌的研究[D]. 杨凌: 西北农林科技大学博士学位论文, 2014. HU X. Gut-associated microbiota diversity of the white pine beetle (Dendroctonus armandi) and cellulolytic microbial community in its larval gut[D]. Yangling: Doctoral Dissertation of Northwest A&F University, 2014 (in Chinese).
    [35] EL-SAYED WS, IBRAHIM RA. Diversity and phylogenetic analysis of endosymbiotic bacteria of the date palm root borer Oryctes agamemnon (Coleoptera: Scarabaeidae)[J]. BMC Microbiology, 2015, 15(1): 1-10.
    [36] GAO GQ, GAO J, HAO CF, DAI LL, CHEN H. Biodiversity and activity of gut fungal communities across the life history of Trypophloeus klimeschi (Coleoptera: Curculionidae: Scolytinae)[J]. International Journal of Molecular Sciences, 2018, 19(7): 2010.
    [37] DOUGLAS AE. How multi-partner endosymbioses function[J]. Nature Reviews Microbiology, 2016, 14(12): 731-743.
    [38] DOUGLAS AE. The B vitamin nutrition of insects: the contributions of diet, microbiome and horizontally acquired genes[J]. Current Opinion in Insect Science, 2017, 23: 65-69.
    [39] 陈勃生. 家蚕肠道微生物的多样性及其代谢功能探究[D]. 杭州: 浙江大学博士学位论文, 2020. CHEN BS. Biodiversity and metabolic functions of gut microbiota in silkworm Bombyx mori[D]. Hangzhou: Doctoral Dissertation of Zhejiang University, 2020 (in Chinese).
    [40] SUÁREZ-MOO P, CRUZ-ROSALES M, IBARRA-LACLETTE E, DESGARENNES D, HUERTA C, LAMELAS A. Diversity and composition of the gut microbiota in the developmental stages of the dung beetle Copris incertus say (Coleoptera, Scarabaeidae)[J]. Frontiers in Microbiology, 2020, 11: 1698.
    [41] STEGEN JC, LIN XJ, FREDRICKSON JK, CHEN XY, KENNEDY DW, MURRAY CJ, ROCKHOLD ML, KONOPKA A. Quantifying community assembly processes and identifying features that impose them[J]. The ISME Journal, 2013, 7(11): 2069-2079.
    [42] LUAN L, LIANG C, CHEN LJ, WANG HT, XU QS, JIANG YJ, SUN B. Coupling bacterial community assembly to microbial metabolism across soil profiles[J]. mSystems, 2020, 5(3): e00298-e00220.
    [43] YANG J, YU ZS, WANG BB, NDAYISENGA F. Gut region induces gastrointestinal microbiota community shift in Ujimqin sheep (Ovis aries): from a multi-domain perspective[J]. Environmental Microbiology, 2021, 23(12): 7603-7616.
    [44] YAN QY, LI JJ, YU YH, WANG JJ, HE ZL, van NOSTRAND JD, KEMPHER ML, WU LY, WANG YP, LIAO LJ, LI XH, WU S, NI JJ, WANG C, ZHOU JZ. Environmental filtering decreases with fish development for the assembly of gut microbiota[J]. Environmental Microbiology, 2016, 18(12): 4739-4754.
    [45] ZHOU JZ, NING DL. Stochastic community assembly: does it matter in microbial ecology?[J]. Microbiology and Molecular Biology Reviews, 2017, 81(4): e00002-e00017.
    [46] DENG Y, ZHANG P, QIN YJ, TU QC, YANG YF, HE ZL, SCHADT CW, ZHOU JZ. Network succession reveals the importance of competition in response to emulsified vegetable oil amendment for uranium bioremediation[J]. Environmental Microbiology, 2016, 18(1): 205-218.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

宾小艳,王苗苗,李晓璐,项兴佳,万霞. 彩虹锹甲不同发育阶段肠道真菌群落特征研究[J]. 微生物学报, 2023, 63(7): 2728-2742

复制
分享
文章指标
  • 点击次数:294
  • 下载次数: 1016
  • HTML阅读次数: 572
  • 引用次数: 0
历史
  • 收稿日期:2022-10-19
  • 最后修改日期:2023-01-18
  • 在线发布日期: 2023-07-05
  • 出版日期: 2023-07-04
文章二维码