一株嗜热聚对苯二甲酸乙二醇酯降解菌的分离及其降解特性解析
作者:
  • 周剑桥

    周剑桥

    江南大学食品科学与技术国家重点实验室, 江苏 无锡 214122;江南大学生物工程学院 工业生物技术教育部重点实验室, 江苏 无锡 214122;江南大学教育部食品安全国际合作联合实验室, 江苏 无锡 214122
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 黄青松

    黄青松

    江南大学食品科学与技术国家重点实验室, 江苏 无锡 214122;江南大学生物工程学院 工业生物技术教育部重点实验室, 江苏 无锡 214122;江南大学教育部食品安全国际合作联合实验室, 江苏 无锡 214122
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 李娟

    李娟

    江南大学食品科学与技术国家重点实验室, 江苏 无锡 214122;江南大学生物工程学院 工业生物技术教育部重点实验室, 江苏 无锡 214122;江南大学教育部食品安全国际合作联合实验室, 江苏 无锡 214122
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 金昶序

    金昶序

    江南大学食品科学与技术国家重点实验室, 江苏 无锡 214122;江南大学生物工程学院 工业生物技术教育部重点实验室, 江苏 无锡 214122;江南大学教育部食品安全国际合作联合实验室, 江苏 无锡 214122
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 陈晓倩

    陈晓倩

    江南大学食品科学与技术国家重点实验室, 江苏 无锡 214122;江南大学生物工程学院 工业生物技术教育部重点实验室, 江苏 无锡 214122;江南大学教育部食品安全国际合作联合实验室, 江苏 无锡 214122
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 吴敬

    吴敬

    江南大学食品科学与技术国家重点实验室, 江苏 无锡 214122;江南大学生物工程学院 工业生物技术教育部重点实验室, 江苏 无锡 214122;江南大学教育部食品安全国际合作联合实验室, 江苏 无锡 214122
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 颜正飞

    颜正飞

    江南大学食品科学与技术国家重点实验室, 江苏 无锡 214122;江南大学生物工程学院 工业生物技术教育部重点实验室, 江苏 无锡 214122;江南大学教育部食品安全国际合作联合实验室, 江苏 无锡 214122
    在期刊界中查找
    在百度中查找
    在本站中查找
基金项目:

国家重点研发计划(2019YFA0706900);江苏省政策引导类计划-国际科技合作(BZ2020010);江苏省研究生科研与实践创新计划(KYCX22_2430)


Isolation and characterization of a thermophilic PET-degrading bacterium
Author:
  • ZHOU Jianqiao

    ZHOU Jianqiao

    State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China;Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Bioengineering, Jiangnan University, Wuxi 214122, Jiangsu, China;International Joint Laboratory on Food Safety, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • HUANG Qingsong

    HUANG Qingsong

    State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China;Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Bioengineering, Jiangnan University, Wuxi 214122, Jiangsu, China;International Joint Laboratory on Food Safety, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Juan

    LI Juan

    State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China;Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Bioengineering, Jiangnan University, Wuxi 214122, Jiangsu, China;International Joint Laboratory on Food Safety, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • JIN Changxu

    JIN Changxu

    State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China;Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Bioengineering, Jiangnan University, Wuxi 214122, Jiangsu, China;International Joint Laboratory on Food Safety, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHEN Xiaoqian

    CHEN Xiaoqian

    State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China;Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Bioengineering, Jiangnan University, Wuxi 214122, Jiangsu, China;International Joint Laboratory on Food Safety, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WU Jing

    WU Jing

    State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China;Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Bioengineering, Jiangnan University, Wuxi 214122, Jiangsu, China;International Joint Laboratory on Food Safety, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • YAN Zhengfei

    YAN Zhengfei

    State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China;Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Bioengineering, Jiangnan University, Wuxi 214122, Jiangsu, China;International Joint Laboratory on Food Safety, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】大量聚对苯二甲酸乙二醇酯(polyethylene terephthalate, PET)塑料作为废弃物被丢弃,严重危害生态健康。针对嗜热PET降解菌缺乏这一情况,本研究旨在获得能够降解PET的嗜热菌,并阐述其降解机制。【方法】采集云南腾冲热泉中的废弃PET瓶,分析其表面生物膜的微生物群落多样性,从中筛选能够以PET为营养源生长的嗜热菌,并基于16S rRNA基因序列加以鉴定;以菌株的定殖能力与生长曲线为指标,优选出降解能力较强的降解菌,并测定其最适pH、温度和NaCl浓度;降解能力较强的降解菌分别作用于PET及PET中间体双(羟乙基)对苯二甲酸酯[bis(hydroxyethyl) terephthalate, BHET]和对苯二甲酸单(2-羟乙基)酯[mono(2-hydroxyethyl) terephthalate, MHET)],测定产物生成量与降解率;通过观察PET膜表面微观结构、活菌数、酯酶活性等探究降解菌与PET的互作过程。【结果】废弃PET瓶表面生物膜中的微生物群落多样性低;从生物膜中筛选出5株能够以PET为营养源生长的嗜热菌;其中,菌株JQ3以PET为唯一碳源生长最佳,作为降解能力较强的降解菌,被鉴定为嗜热淀粉芽孢杆菌(Bacillus thermoamylovorans),其最适生长pH为7.0、最适生长温度为50 、最适生长NaCl浓度为0.5%;菌株JQ3以0.043 mg PET/d的速率降解PET,对苯二甲酸(terephthalic acid, TPA)产量在第7天达到峰值45.2 mmol/L;菌株JQ3对PET中间体降解效率显著,6 h可降解85.9%的BHET,60 h可降解50.1%的MHET。菌株JQ3能够定殖于PET表面并形成生物膜,侵蚀PET并造成开裂和剥落。【结论】B. thermoamylovorans JQ3作为一株嗜热PET降解菌,能够高温(60 降解PET及其中间体,为实现PET的有效降解提供了新策略。

    Abstract:

    [Objective] Polyethylene terephthalate (PET) plastics are usually discarded as waste, which seriously harms the ecological health. Considering the lack of thermophilic PET-degrading bacteria, this study aims to obtain a thermophilic PET-degrading bacterium and decipher its degradation mechanism. [Methods] We collected waste PET bottles from hot springs in Tengchong City, Yunnan Province and then extracted the biofilms from their surfaces to investigate the microbial diversity. We screened the thermophilic bacteria that could grow with PET as a nutrient source and identified them based on 16S rRNA gene sequences. According to the colonization ability and growth curve, we screened out a strain with strong degrading ability and determined the optimal pH, temperature, and NaCl concentration for its growth. Further, we investigated the degrading effects of the strain on PET and its intermediates, (bis(hydroxyethyl) terephthalate (BHET) and mono(2-hydroxyethyl) terephthalate (MHET), by measuring the product yield and degradation rate. In addition, we evaluated the interaction between the degrading bacterium and PET by observing morphology of the PET surface and determining the viable count and esterase activity. [Results] The microbial diversity was low in the biofilms of waste PET bottles. We isolated 5 thermophilic bacterial strains that could grow with PET as a nutrient source from the biofilms. Strain JQ3 using PET as the sole carbon source showed the best growth, which was identified as Bacillus thermoamylovorans. Its optimal growth conditions were pH 7.0, 50, and 0.5% NaCl. Strain JQ3 degraded PET at a rate of 0.043 mg PET/d, and the yield of terephthalic acid (TPA) peaked at 45.2 mmol/L on the 7th day. Moreover, strain JQ3 exhibited significant degradation effects on PET intermediates, degrading 85.9% of BHET within 6 h and 50.1% of MHET within 60 h. Strain JQ3 formed biofilm on the PET surface by colonization, which caused cracking and peeling of the PET surface. [Conclusion] The thermophilic PET-degrading strain B. thermoamylovorans JQ3 can degrade PET and its intermediates at high temperature (60), which provides a new strategy for PET degradation.

    参考文献
    [1] QUECHOLAC-PIÑA X, GARCÌA-RIVERA MA, ESPINOSA-VALDEMAR RM, VÁZQUEZ-MORILLAS A, BELTRÁN-VILLAVICENCIO M, CISNEROS- RAMOS AL. Biodegradation of compostable and oxodegradable plastic films by backyard composting and bioaugmentation[J]. Environmental Science and Pollution Research International, 2017, 24(33): 25725-25730.
    [2] WONG SL, NGADI N, ABDULLAH TAT, INUWA IM. Current state and future prospects of plastic waste as source of fuel: a review[J]. Renewable and Sustainable Energy Reviews, 2015, 50: 1167-1180.
    [3] ROCHMAN CM, BROWNE MA, HALPERN BS, HENTSCHEL BT, HOH E, KARAPANAGIOTI HK, RIOS-MENDOZA LM, TAKADA H, TEH S, THOMPSON RC. Policy: classify plastic waste as hazardous[J]. Nature, 2013, 494(7436): 169-171.
    [4] GEYER R, JAMBECK JR, LAW KL. Production, use, and fate of all plastics ever made[J]. Science Advances, 2017, 3(7): e1700782-e1700782.
    [5] MOHARIR RV, KUMAR S. Challenges associated with plastic waste disposal and allied microbial routes for its effective degradation: a comprehensive review[J]. Journal of Cleaner Production, 2019, 208: 65-76.
    [6] WEBB H, ARNOTT J, CRAWFORD R, IVANOVA E. Plastic degradation and its environmental implications with special reference to poly(ethylene terephthalate)[J]. Polymers, 2012, 5(1): 1-18.
    [7] WIERCKX N, PRIETO MA, POMPOSIELLO P, de LORENZO V, O’CONNOR K, BLANK LM. Plastic waste as a novel substrate for industrial biotechnology[J]. Microbial Biotechnology, 2015, 8(6): 900-903.
    [8] DANSO D, CHOW J, STREIT WR. Plastics: environmental and biotechnological perspectives on microbial degradation[J]. Applied and Environmental Microbiology, 2019, 85(19): e01095-e01019.
    [9] MÜLLER RJ, SCHRADER H, PROFE J, DRESLER K, DECKWER WD. Enzymatic degradation of poly(ethylene terephthalate): rapid hydrolyse using a hydrolase from T. fusca[J]. Macromolecular Rapid Communications, 2005, 26(17): 1400-1405.
    [10] YOSHIDA S, HIRAGA K, TAKEHANA T, TANIGUCHI I, YAMAJI H, MAEDA Y, TOYOHARA K, MIYAMOTO K, KIMURA Y, ODA K. A bacterium that degrades and assimilates poly(ethylene terephthalate)[J]. Science, 2016, 351(6278): 1196-1199.
    [11] JOO S, CHO IJ, SEO H, SON HF, SAGONG HY, SHIN TJ, CHOI SY, LEE SY, KIM KJ. Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation[J]. Nature Communications, 2018, 9(1): 382.
    [12] AUTA HS, EMENIKE CU, FAUZIAH SH. Screening of Bacillus strains isolated from mangrove ecosystems in Peninsular Malaysia for microplastic degradation[J]. Environmental Pollution: Barking, Essex, 2017, 231(pt 2): 1552-1559.
    [13] JANCZAK K, HRYNKIEWICZ K, ZNAJEWSKA Z, DĄBROWSKA G. Use of rhizosphere microorganisms in the biodegradation of PLA and PET polymers in compost soil[J]. International Biodeterioration and Biodegradation, 2018, 130: 65-75.
    [14] JAISWAL S, SHARMA B, SHUKLA P. Integrated approaches in microbial degradation of plastics[J]. Environmental Technology and Innovation, 2020, 17(C): 100567.
    [15] RONKVIST ÅM, XIE WC, LU WH, GROSS RA. Cutinase-catalyzed hydrolysis of poly(ethylene terephthalate)[J]. Macromolecules, 2009, 42(14): 5128-5138.
    [16] FENG L, HE L, JIANG S, CHEN J, ZHOU C, QIAN ZJ, HONG P, SUN S, LI C. Investigating the composition and distribution of microplastics surface biofilms in coral areas[J]. Chemosphere, 2020, 252: 126565.
    [17] HUANG QS, YAN ZF, CHEN XQ, DU YY, LI J, LIU ZZ, XIA W, CHEN S, WU J. Accelerated biodegradation of polyethylene terephthalate by Thermobifida fusca cutinase mediated by Stenotrophomonas pavanii[J]. The Science of the Total Environment, 2022, 808: 152107.
    [18] CHEN XQ, GUO ZY, WANG L, YAN ZF, JIN CX, HUANG QS, KONG DM, RAO DM, WU J. Directional-path modification strategy enhances PET hydrolase catalysis of plastic degradation[J]. Journal of Hazardous Materials, 2022, 433: 128816.
    [19] ALISCH M, FEUERHACK A, MÜLLER H, MENSAK B, ANDREAUS J, Zimmermann W. Biocatalytic modification of polyethylene terephthalate fibres by esterases from actinomycete isolates[J]. Biocatalysis and Biotransformation, 2004, 22(5/6): 347-351.
    [20] MESSER JW, RICE EW, JOHNSON CH. Total viable counts spread plate technique[J]. Encyclopedia of Food Microbiology, 1999, 3: 2159-2160.
    [21] GAO R, SUN C. A marine bacterial community capable of degrading poly(ethylene terephthalate) and polyethylene[J]. Journal of Hazardous Materials, 2021, 416: 125928.
    [22] OBERBECKMANN S, OSBORN AM, DUHAIME MB. Microbes on a bottle: substrate, season and geography influence community composition of microbes colonizing marine plastic debris[J]. PLoS One, 2016, 11(8): e0159289.
    [23] HIROTA Y, NAYA M, TADA M, SHIKYO Y, KAWANISHI T, TAKIGUCHI N. Analysis of soil fungal community structure on the surface of buried polyethylene terephthalate[J]. Journal of Polymers and the Environment, 2021, 29: 1-13.
    [24] ZHANG J, WANG X, GONG J, GU Z. A study on the biodegradability of polyethylene terephthalate fiber and diethylene glycol terephthalate[J]. Journal of Applied Polymer Science, 2010, 93(3): 1089-1096.
    [25] PETERS AC, THOMAS L, WIMPENNY JWT. Effects of salt concentration on bacterial growth on plates with gradients of pH and temperature[J]. FEMS Microbiology Letters, 1991, 77(2/3): 309-314.
    [26] 王宏阳, 巩继贤, 李辉芹, 李政, 李秋瑾, 张健飞. 微生物降解PET过程研究[J]. 针织工业, 2016, (1): 43-46. WANG HY, GONG JX, LI HQ, LI Z, LI QJ, ZHANG JF. Research process of microbial degradation of polyester[J]. Knitting Industries, 2016, (1): 43-46 (in Chinese).
    [27] 顾冷涛, 颜正飞, 吴敬, 宿玲恰. 一株PET降解菌株的筛选鉴定及降解特性研究[J]. 基因组学与应用生物学, 2021, 40(3): 1179-1186. GU LT, YAN ZF, WU J, SU LQ. Screening, identification and degradation characteristics of a PET-degrading strain[J]. Genomics and Applied Biology, 2021, 40(3): 1179-1186 (in Chinese).
    [28] NOWAK B, PAJĄK J, DROZD-BRATKOWICZ M, RYMARZ G. Microorganisms participating in the biodegradation of modified polyethylene films in different soils under laboratory conditions[J]. International Biodeterioration and Biodegradation, 2011, 65(6): 757-767.
    [29] XU X, WANG S, GAO F, LI J, ZHENG L, SUN C, HE C, WANG Z, QU L. Marine microplastic-associated bacterial community succession in response to geography, exposure time, and plastic type in China’s coastal seawaters[J]. Marine Pollution Bulletin, 2019, 145: 278-286.
    [30] NOWAK B, PAJĄK J, ŁABU ZEK S, RYMARZ G, TALIK E. Biodegradation of poly(ethylene terephthalate) modified withpolyester “BionolleÒ” by Penicillium funiculosum[J]. Polimery, 2011, 56: 35-44.
    [31] JARA MAT, ANTUNES AA, BARRETO NSE, RUFINO RD, DURAN NE, ALBUQUERQUE CDC, NASCIMENTO AE, CAMPOS-TAKAKI GM. Formation of biofilms and production of enzymes by Bacillus subtilis on surfaces of polyethylene terephtalate simulating degradation[C]//Current Research Topics in Applied Microbiology and Microbial Biotechnology. University of Seville Spain World Scientific, 2009: 254-258.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

周剑桥,黄青松,李娟,金昶序,陈晓倩,吴敬,颜正飞. 一株嗜热聚对苯二甲酸乙二醇酯降解菌的分离及其降解特性解析[J]. 微生物学报, 2023, 63(7): 2822-2834

复制
分享
文章指标
  • 点击次数:465
  • 下载次数: 782
  • HTML阅读次数: 520
  • 引用次数: 0
历史
  • 收稿日期:2022-10-30
  • 最后修改日期:2023-01-01
  • 在线发布日期: 2023-07-05
  • 出版日期: 2023-07-04
文章二维码