保护性耕作增强了真菌群落生态网络稳定性
作者:
基金项目:

中国科学院战略重点研究计划(XDA28070302,XDA28020201);国家自然科学基金(42177105);黑龙江省自然科学基金(ZD2022D001)


Conservation tillage enhanced the stability of fungal community network
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [54]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】解析不同耕作措施下的土壤真菌群落组成以及病原真菌生态网络特征,为了解真菌在维持和改善农业生态系统稳定性方面提供科学依据。【方法】通过高通量测序技术,对传统犁耕(moldboard plow, MP)和保护性耕作[少耕(reduced tillage, RT)、免耕(no-tillage, NT)]下根际和非根际土壤中真菌群落的组成、多样性和真菌病原菌的关联网络特征进行了综合分析。【结果】与NT对比,MP和RT显著增加了土壤全碳(total carbon, TC)、全氮(total nitrogen, TN)和速效钾(available potassium, AK)的含量。根际效应对真菌群落的影响显著高于耕作措施。根际土壤中,RT处理的Shannon指数显著高于MP和NT。NT和RT处理显著降低了根际土壤中镰孢菌(Fusarium)和链格孢菌(Alternaria)的相对丰度。此外,RT降低了病原真菌的网络复杂性、减少了病原菌与其他真菌间的交互作用,增强了网络稳定性。【结论】保护性耕作RT是具有增加土壤养分、提升真菌网络稳定性且具有减轻病原菌有效传播作用的最佳耕作模式,为东北地区的耕作应用提供了新的视角。

    Abstract:

    [Objective] This study analyzed the fungal community composition and the pathogenic fungal network characteristics in the fields with different tillage measures, aiming to provide a scientific basis for understanding the role of microorganisms in maintaining and improving agroecosystem stability. [Methods] We employed high-throughput sequencing to investigate the composition and diversity of fungal communities and the network of fungal pathogens in the rhizosphere and bulk soils under the moldboard plow tillage (MP) and conservation tillage (reduced tillage: RT; no-tillage: NT). [Results] Compared with NT, MP and RT significantly increased the total carbon (TC), total nitrogen (TN), and available potassium (AK) in both the rhizosphere and bulk soils. The rhizosphere effect on the changes of fungal communities was greater than the effect of tillage measure. The Shannon index of the fungi in the rhizosphere soil under RT treatment was higher than that under MP and NT treatments. NT and RT decreased the relative abundance of Fusarium and Alternaria in the rhizosphere soils. In addition, RT reduced the network complexity of pathogenic fungi, weakened the interactions between the pathogenic fungi and their associated taxa, and enhanced the network stability. [Conclusion] These findings indicate RT as an optimal practice can increase soil nutrients, stabilize microbial network structure, and alleviate the potential transmission of pathogens, which provides a new perspective for tillage application in Northeast China.

    参考文献
    [1] 李保国, 刘忠, 黄峰, 杨晓光, 刘志娟, 万炜, 汪景宽, 徐英德, 李子忠, 任图生. 巩固黑土地粮仓 保障国家粮食安全[J]. 中国科学院院刊, 2021, 36(10): 1184-1193. LI BG, LIU Z, HUANG F, YANG XG, LIU ZJ, WAN W, WANG JK, XU YD, LI ZZ, REN TS. Ensuring national food security by strengthening high-productivity black soil granary in Northeast China[J]. Bulletin of Chinese Academy of Sciences, 2021, 36(10): 1184-1193 (in Chinese).
    [2] 陈玉洁, 张平宇, 刘世薇, 谭俊涛. 东北西部粮食生产时空格局变化及优化布局研究[J]. 地理科学, 2016, 36(9): 1397-1407. CHEN YJ, ZHANG PY, LIU SW, TAN JT. The spatio-temporal pattern change and optimum layout of grain production in the west of Northeast China[J]. Scientia Geographica Sinica, 2016, 36(9): 1397-1407 (in Chinese).
    [3] ZHANG B, HE HB, DING XL, ZHANG XD, ZHANG XP, YANG XM, FILLEY TR. Soil microbial community dynamics over a maize (Zea mays L.) growing season under conventional- and no-tillage practices in a rainfed agroecosystem[J]. Soil & Tillage Research, 2012, 124: 153-160.
    [4] BUSARI MA, KUKAL SS, KAUR A, BHATT R, DULAZI AA. Conservation tillage impacts on soil, crop and the environment[J]. International Soil and Water Conservation Research, 2015, 3(2): 119-129.
    [5] ZHAO X, LIU SL, PU C, ZHANG XQ, XUE JF, REN YX, ZHAO XL, CHEN F, LAL R, ZHANG HL. Crop yields under no-till farming in China: a meta-analysis[J]. European Journal of Agronomy, 2017, 84: 67-75.
    [6] GOVAERTS B, MEZZALAMA M, SAYRE KD, CROSSA J, NICOL JM, DECKERS J. Long-term consequences of tillage, residue management, and crop rotation on maize/wheat root rot and nematode populations in subtropical highlands[J]. Applied Soil Ecology, 2006, 32(3): 305-315.
    [7] BAILEY A, DEASY C, QUINTON J, SILGRAM M, JACKSON B, STEVENS C. Determining the cost of in-field mitigation options to reduce sediment and phosphorus loss[J]. Land Use Policy, 2013, 30(1): 234-242.
    [8] DANG YP, SEYMOUR NP, WALKER SR, BELL MJ, FREEBAIRN DM. Strategic tillage in no-till farming systems in Australia’s northern grains-growing regions: i. drivers and implementation[J]. Soil & Tillage Research, 2015, 152: 104-114.
    [9] ALVAREZ R. A review of nitrogen fertilizer and conservation tillage effects on soil organic carbon storage[J]. Soil Use and Management, 2005, 21(1): 38-52.
    [10] HOBBS PR, SAYRE K, GUPTA R. The role of conservation agriculture in sustainable agriculture[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363(1491): 543-555.
    [11] FALKOWSKI PG, FENCHEL T, DELONG EF. The microbial engines that drive earth’s biogeochemical cycles[J]. Science, 2008, 320(5879): 1034-1039.
    [12] LIU ZX, GU HD, LIANG AZ, LI LJ, YAO Q, XU YX, LIU JJ, JIN J, LIU XB, WANG GH. Conservation tillage regulates the assembly, network structure and ecological function of the soil bacterial community in black soils[J]. Plant and Soil, 2021, 472(1/2): 207-223.
    [13] WANG ZT, LIU L, CHEN Q, WEN XX, LIAO YC. Conservation tillage increases soil bacterial diversity in the dryland of northern China[J]. Agronomy for Sustainable Development, 2016, 36(2): 28.
    [14] ZUBER SM, VILLAMIL MB. Meta-analysis approach to assess effect of tillage on microbial biomass and enzyme activities[J]. Soil Biology & Biochemistry, 2016, 97: 176-187.
    [15] ACOSTA-MARTÍNEZ V, MIKHA MM, VIGIL MF. Microbial communities and enzyme activities in soils under alternative crop rotations compared to wheat-fallow for the Central Great Plains[J]. Applied Soil Ecology, 2007, 37(1/2): 41-52.
    [16] MINOSHIMA H, JACKSON LE, CAVAGNARO TR, SÁNCHEZ-MORENO S, FERRIS H, TEMPLE SR, GOYAL S, MITCHELL JP. Soil food webs and carbon dynamics in response to conservation tillage in California[J]. Soil Science Society of America Journal, 2007, 71(3): 952-963.
    [17] ROGET DK, NEATE SM, ROVIRA AD. Effect of sowing point design and tillage practice on the incidence of rhizoctonia root rot, take-all and cereal cyst nematode in wheat and barley[J]. Australian Journal of Experimental Agriculture, 1996, 36(6): 683-693.
    [18] WANG HH, LI X, LI X, WANG J, LI XY, GUO QC, YU ZX, YANG TT, ZHANG HW. Long-term no-tillage and different residue amounts alter soil microbial community composition and increase the risk of maize root rot in Northeast China[J]. Soil & Tillage Research, 2020, 196: 104452.
    [19] WANG HH, GUO QC, LI X, LI X, YU ZX, LI XY, YANG TT, SU ZC, ZHANG HW, ZHANG CG. Effects of long-term no-tillage with different straw mulching frequencies on soil microbial community and the abundances of two soil-borne pathogens[J]. Applied Soil Ecology, 2020, 148: 103488.
    [20] ZHANG CF, LIN ZL, QUE YX, FALLAH N, TAYYAB M, LI SY, LUO J, ZHANG ZC, ABUBAKAR AY, ZHANG H. Straw retention efficiently improves fungal communities and functions in the fallow ecosystem[J]. BMC Microbiology, 2021, 21(1): 52.
    [21] PHILIPPOT L, RAAIJMAKERS JM, LEMANCEAU P, van der PUTTEN WH. Going back to the roots: the microbial ecology of the rhizosphere[J]. Nature Reviews Microbiology, 2013, 11(11): 789-799.
    [22] HU XJ, LIU JJ, LIANG AZ, LI LJ, YAO Q, YU ZH, LI YS, JIN J, LIU XB, WANG GH. Conventional and conservation tillage practices affect soil microbial co-occurrence patterns and are associated with crop yields[J]. Agriculture Ecosystems & Environment, 2021, 319: 107534.
    [23] CAPORASO JG, LAUBER CL, WALTERS WA, BERG-LYONS D, HUNTLEY J, FIERER N, OWENS SM, BETLEY J, FRASER L, BAUER M, GORMLEY N, GILBERT JA, SMITH G, KNIGHT R. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms[J]. The ISME Journal, 2012, 6(8): 1621-1624.
    [24] TEDERSOO L, TOOMING-KLUNDERUD A, ANSLAN S. PacBio metabarcoding of fungi and other eukaryotes: errors, biases and perspectives[J]. The New Phytologist, 2018, 217(3): 1370-1385.
    [25] EDGAR RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Frontiers in Plant Science, 2013, 10(10): 996-998.
    [26] NGUYEN NH, SONG ZW, BATES ST, BRANCO S, TEDERSOO L, MENKE J, SCHILLING JS, KENNEDY PG. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild[J]. Fungal Ecology, 2016, 20: 241-248.
    [27] LI HY, QIU YZ, YAO T, HAN DR, GAO YM, ZHANG JG, MA YC, ZHANG HR, YANG XL. Nutrients available in the soil regulate the changes of soil microbial community alongside degradation of alpine meadows in the northeast of the Qinghai-Tibet Plateau[J]. The Science of the Total Environment, 2021, 792: 148363.
    [28] FRIEDMAN J, ALM EJ. Inferring correlation networks from genomic survey data[J]. PLoS Computational Biology, 2012, 8(9): e1002687.
    [29] SHANNON P, MARKIEL A, OZIER O, BALIGA NS, WANG JT, RAMAGE D, AMIN N, SCHWIKOWSKI B, IDEKER T. Cytoscape: a software environment for integrated models of biomolecular interaction networks[J]. Frontiers in Immunology, 2003, 13(11): 2498-2504.
    [30] HU XJ, LIANG AZ, YAO Q, LIU ZX, YU ZH, WANG GH, LIU JJ. Ridge tillage improves soil properties, sustains diazotrophic communities, and enhances extensively cooperative interactions among diazotrophs in a clay loam soil[J]. Frontiers in Microbiology, 2020, 11: 1333.
    [31] SUN BJ, JIA SX, ZHANG SX, MCLAUGHLIN NB, LIANG AZ, CHEN XW, LIU SY, ZHANG XP. No tillage combined with crop rotation improves soil microbial community composition and metabolic activity[J]. Environmental Science and Pollution Research International, 2016, 23(7): 6472-6482.
    [32] MELERO S, PANETTIERI M, MADEJON E, MACPHERSON HG, MORENO F, MURILLO JM. Implementation of chiselling and mouldboard ploughing in soil after 8 years of no-till management in SW, Spain: effect on soil quality[J]. Soil & Tillage Research, 2011, 112(2): 107-113.
    [33] CHEN HH, DAI ZM, VEACH AM, ZHENG JQ, XU JM, SCHADT CW. Global meta-analyses show that conservation tillage practices promote soil fungal and bacterial biomass[J]. Agriculture Ecosystems & Environment, 2020, 293: 106841.
    [34] ZHANG Y, LI XJ, GREGORICH EG, MCLAUGHLIN NB, ZHANG XP, GUO YF, GAO Y, LIANG AZ. Evaluating storage and pool size of soil organic carbon in degraded soils: tillage effects when crop residue is returned[J]. Soil and Tillage Research, 2019, 192: 215-221.
    [35] COOKSON WR, MURPHY DV, ROPER MM. Characterizing the relationships between soil organic matter components and microbial function and composition along a tillage disturbance gradient[J]. Soil Biology & Biochemistry, 2008, 40(3): 763-777.
    [36] RAHMAN MH, OKUBO A, SUGIYAMA S, MAYLAND HF. Physical, chemical and microbiological properties of an andisol as related to land use and tillage practice[J]. Soil & Tillage Research, 2008, 101(1/2): 10-19.
    [37] WAGG C, BENDER SF, WIDMER F, van der HEIJDEN MG. Soil biodiversity and soil community composition determine ecosystem multifunctionality[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(14): 5266-5270.
    [38] SALEEM M, HU J, JOUSSET A. More than the sum of its parts: microbiome biodiversity as a driver of plant growth and soil health[J]. Annual Review of Ecology, Evolution, and Systematics, 2019, 50(1): 145-168.
    [39] SCHMIDT R, MITCHELL J, SCOW K. Cover cropping and no-till increase diversity and symbiotroph: saprotroph ratios of soil fungal communities[J]. Soil Biology & Biochemistry, 2019, 129: 99-109.
    [40] van BRUGGEN AH, FINCKH MR. Plant diseases and management approaches in organic farming systems[J]. Annual Review of Phytopathology, 2016, 54: 25-54.
    [41] LARKIN RP. Soil health paradigms and implications for disease management[J]. Annual Review of Phytopathology, 2015, 53: 199-221.
    [42] XIA Q, LIU XL, GAO ZQ, WANG JM, YANG ZP. Responses of rhizosphere soil bacteria to 2-year tillage rotation treatments during fallow period in semiarid southeastern Loess Plateau[J]. PeerJ, 2020, 8: e8853.
    [43] LINKIES A, JACOB S, ZINK P, MASCHEMER M, MAIER W, KOCH E. Characterization of cultural traits and fungicidal activity of strains belonging to the fungal genus Chaetomium[J]. Journal of Applied Microbiology, 2021, 131(1): 375-391.
    [44] BENYAGOUB M, JABAJI-HARE SH, BANVILLE G, CHAREST PM. Stachybotrys elegans: a destructive mycoparasite of Rhizoctonia solani[J]. Mycological Research, 1994, 98(5): 493-505.
    [45] WANG Q, LIANG AZ, CHEN XW, ZHANG SX, ZHANG Y, MCLAUGHLIN NB, GAO Y, JIA SX. The impact of cropping system, tillage and season on shaping soil fungal community in a long-term field trial[J]. European Journal of Soil Biology, 2021, 102: 103253.
    [46] NAVARRO-NOYA YE, GOMEZ-ACATA S, MONTOYA-CIRIACO N, ROJAS-VALDEZ A, SUAREZ-ARRIAGA MC, VALENZUELA-ENCINAS C, JIMENEZ-BUENO N, VERHULST N, GOVAERTS B, DENDOOVEN L. Relative impacts of tillage, residue management and crop-rotation on soil bacterial communities in a semi-arid agroecosystem[J]. Soil Biology & Biochemistry, 2013, 65: 86-95.
    [47] ZHANG BG, ZHANG J, LIU Y, SHI P, WEI GH. Co-occurrence patterns of soybean rhizosphere microbiome at a continental scale[J]. Soil Biology & Biochemistry, 2018, 118: 178-186.
    [48] EHRMANN J, RITZ K. Plant: soil interactions in temperate multi-cropping production systems[J]. Plant and Soil, 2013, 376(1/2): 1-29.
    [49] MAPELLI F, MARASCO R, FUSI M, SCAGLIA B, TSIAMIS G, ROLLI E, FODELIANAKIS S, BOURTZIS K, VENTURA S, TAMBONE F, ADANI F, BORIN S, DAFFONCHIO D. The stage of soil development modulates rhizosphere effect along a High Arctic Desert chronosequence[J]. The ISME Journal, 2018, 12(5): 1188-1198.
    [50] JIANG YJ, LI SZ, LI RP, ZHANG J, LIU YH, LV LF, ZHU H, WU WL, LI WL. Plant cultivars imprint the rhizosphere bacterial community composition and association networks[J]. Soil Biology & Biochemistry, 2017, 109: 145-155.
    [51] SIX J, PAUSTIAN K, ELLIOTT ET, COMBRINK C. Soil structure and organic matter I. distribution of aggregate-size classes and aggregate-associated carbon[J]. Soil Science Society of America Journal, 2000, 64(2): 681-689.
    [52] LE GUILLOU C, ANGERS DA, LETERME P, MENASSERI-AUBRY S. Changes during winter in water-stable aggregation due to crop residue quality[J]. Soil Use and Management, 2012, 28(4): 590-595.
    [53] KITANO H. Biological robustness[J]. Nature Reviews Genetics, 2004, 5(11): 826-837.
    [54] DENG YL, RUAN YJ, MA B, TIMMONS MB, LU HF, XU XY, ZHAO HP, YIN XW. Multi-omics analysis reveals niche and fitness differences in typical denitrification microbial aggregations[J]. Environment International, 2019, 132: 105085.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

雷进田,刘俊杰,刘株秀,梁爱珍,胡晓婧,于镇华,金剑,刘晓冰,王光华. 保护性耕作增强了真菌群落生态网络稳定性[J]. 微生物学报, 2023, 63(7): 2835-2847

复制
分享
文章指标
  • 点击次数:256
  • 下载次数: 790
  • HTML阅读次数: 532
  • 引用次数: 0
历史
  • 收稿日期:2022-11-01
  • 最后修改日期:2023-01-02
  • 在线发布日期: 2023-07-05
  • 出版日期: 2023-07-04
文章二维码