利福平对红裸须摇蚊幼虫肠道微生物群落结构及功能的潜在影响
作者:
基金项目:

天津师范大学研究生科研创新项目(2022KYCX022Z);天津市教委科研计划(自然科学)(2021KJ183);天津市科学技术普及研发项目(22KPXMRC00070)


Potential effects of rifampin on the structure and the function of gut microbiota in Propsilocerus akamusi larvae
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [49]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】摇蚊是水生生态系统中重要的昆虫种类之一,其肠道微生物与个体生长发育、环境适应等过程密切相关,本研究旨在探究抗生素处理对摇蚊幼虫肠道微生物群落结构及功能的潜在影响。【方法】利用16S rRNA基因扩增子测序技术对利福平处理的红裸须摇蚊(Propsilocerus akamusi)幼虫肠道内容物中的菌群进行分析和比较,应用Tax4Fun法对其肠道菌群功能进行预测。【结果】利福平处理能够改变红裸须摇蚊幼虫肠道群落结构和多样性,宿主肠道菌群中拟杆菌门(Bacteroidota) (P<0.05)以及脱铁杆菌门(Deferribacterota) (P<0.001)的相对丰度显著上升,而变形菌门(Proteobacteria)与厚壁菌门(Firmicutes)相对丰度有所下降。在属水平上,利福平处理使耶尔森菌属(Yersinia)、假单胞菌属(Pseudomonas)、脱硫弧菌属(Desulfovibrio) 的相对丰度有所降低,其中脱硫弧菌属(Desulfovibrio)显著降低。与此同时,共线性网络分析表明利福平处理后细菌群落稳定性大幅下降,菌种之间关联性显著减弱。通过京都基因与基因组百科全书(Kyoto encyclopedia of genes and genomes, KEGG)通路注释预测出红裸须摇蚊幼虫肠道菌群基因与基因信息处理、新陈代谢、人类疾病等功能相关,利福平处理可以使肠道菌群基因的抗药性功能显著上升,而内分泌和代谢疾病功能显著下降。【结论】研究结果揭示了抗生素利福平对红裸须摇蚊幼虫肠道细菌群落结构及功能的潜在影响,为进一步探索摇蚊肠道菌群发挥的必要作用奠定理论基础。

    Abstract:

    [Objective] Propsilocerus akamusi is one of the most important insects in aquatic ecosystem, and its gut microbiota is closely related to individual growth and development, environmental adaptation, and other physiological processes. This study aimed to investigate the potential effects of antibiotic treatment on the structure and the function of gut microbiota in P. akamusi larvae. [Methods] The microbes in the gut content of P. akamusi larvae treated by rifampin were analyzed and compared by using the 16S rRNA amplicon sequencing, and the functional prediction of gut microbial genes was conducted by using Tax4Fun method. [Results] Rifampin altered the structure and the diversity of gut microbiota in P. akamusi larvae. After rifampin treatment, the relative abundance of the bacterial phylum Bacteroidota (P<0.05) and Deferribacterota (P<0.001) was up-regulated, while that of Proteobacteria and Firmicutes was down-regulated. At the genus level, treatment with rifampin resulted in a significant decrease in the relative abundance of Yersinia,Pseudomonas, and Desulfovibrio (P<0.05). At the same time, the co-occurrence network showed that the stability of the microbiota coupled with the correlation between bacterial species were significantly weakened after rifampin treatment. Additionally, the Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis predicted that genes in the gut microbiota of P. akamusi larvae were mostly involved in the genetic information processing, metabolism, and human disease. Rifampin significantly increased the expression level of genes involved in drug resistance, while decreased those participating in endocrine and metabolic disease function. [Conclusion] The above-mentioned results reveal the potential effects of rifampin on the structure and the function of the gut microbiota in P. akamusi larvae, which build a fundamental basis to further explore the essential roles of the gut microbiota in P. akamusi.

    参考文献
    [1] AKMAN GE, DOUGLAS AE. Symbiotic bacteria enable insect to use a nutritionally inadequate diet[J]. Proceedings of the Royal Society B: Biological Sciences, 2009, 276(1658): 987-991.
    [2] SELA R, HALPERN M. Seasonal dynamics of Chironomus transvaalensis populations and the microbial community composition of their egg masses[J]. FEMS Microbiology Letters, 2019, 366(24): fnaa008.
    [3] SELA R, LAVIAD-SHITRIT S, HALPERN M. Changes in microbiota composition along the metamorphosis developmental stages of Chironomus transvaalensis[J]. Frontiers in Microbiology, 2020, 11: 586678.
    [4] 王婉强. 家蝇对铅的耐受性及转运机制研究[D]. 武汉: 华中农业大学博士学位论文. 2021. WANG WQ. Study on tolerance and transport mechanism of lead in Musca domestica[D]. Wuhan: Doctoral Dissertation of Huazhong Agricultural University, 2021 (in Chinese).
    [5] ARÉVALO-CORÉS A, MEJIA-JARAMILLO AM, GRANADA Y, COATSWORTH H, LOWENBERGER C, TRIANA-CHAVEZ O. The midgut microbiota of Colombian Aedes aegypti populations with different levels of resistance to the insecticide lambda-cyhalothrin[J]. Insects, 2020, 11(9): 584.
    [6] CHENG D, GUO Z, RIEGLER M, XI Z, LIANG G, XU Y. Gut symbiont enhances insecticide resistance in a significant pest, the oriental fruit fly Bactrocera dorsalis (Hendel)[J]. Microbiome, 2017, 5(1): 13.
    [7] ARMITAGE PD, CRANSTON PS, PINDER LCV. The Chironomidae: Biology and Ecology of Non-biting Midges[M]. London: Springer Dordrecht, 1980.
    [8] 齐鑫, 马勇军, 潘志祥. 水环境中的摇蚊幼虫研究进展[J]. 台州学院学报, 2008, 30(6): 38-42. QI X, MA YJ, PAN ZX. Progress about chironomid larvae in water environment[J]. Journal of Taizhou University, 2008, 30(6): 38-42 (in Chinese).
    [9] 任淑智. 北京地区河流中大型底栖无脊椎动物与水质关系的研究[J]. 环境科学学报, 1991, 11(1): 31-46. REN SZ. Investigation on macroinvertebrate community and water quality in steams in Beijing area[J]. Acta Scientiae Circumstantiae, 1991, 11(1): 31-46 (in Chinese).
    [10] 公茂庆, 刘宏美, 臧传慧. 蚊虫肠道微生物多样性及其功能的研究进展[J]. 中国媒介生物学及控制杂志, 2022, 33(4): 608-612. GONG MQ, LIU HM, ZANG CH. Research progress on diversity and function of mosquito gut microbe[J]. Chinese Journal of Vector Biology and Control, 2022, 33(4): 608-612 (in Chinese).
    [11] 舒凤月, 孔亮, 王赛迪, 訾芳芳. 山东南四湖摇蚊幼虫群落结构及其对富营养化过程的指示[J]. 应用与环境生物学报, 2013, 19(1): 141-146. SHU FY, KONG L, WANG SD, ZI FF. Chironomid larva community and indication to eutrophication progress in Lake Nansi, Shandong, China[J]. Chinese Journal of Applied & Environmental Biology, 2013, 19(1): 141-146 (in Chinese).
    [12] SUN ZY, SUN WW, AN JT, XU HX, LIU Y, YAN CC. Copper and chlorpyrifos stress affect the gut microbiota of chironomid larvae (Propsilocerus akamusi)[J]. Ecotoxicology and Environmental Safety, 2022, 244: 114027.
    [13] CAI T, ZHANG YH, LIU Y, DENG XQ, HE S, LI JH, WAN H. Wolbachia enhances expression of NlCYP4CE1 in Nilaparvata lugens in response to imidacloprid stress[J]. Insect Science, 2021, 28(2): 355-362.
    [14] CEJA-NAVARRO JA, VEGA FE, KARAOZ U, HAO Z, JENKINS S, LIM HC, KOSINA P, INFANTE F, NORTHEN TR, BRODIE EL. Gut microbiota mediate caffeine detoxification in the primary insect pest of coffee[J]. Nature Communications, 2015, 6(1): 1-9.
    [15] 苏奇, 潘慧鹏, 王少丽, 吴青君, 徐宝云, 张友军. 三种抗生素对B型和Q型烟粉虱内共生菌的去除效果比较研究[J]. 应用昆虫学报, 2012, 49(1): 190-196. SU Q, PAN HP, WANG SL, WU QJ, XU BY, ZHANG YJ. A comparative study of the removal of endosymbionts in Bemisia tabaci biotypes B and Q using three antibiotics[J]. Chinese Journal of Applied Entomology, 2012, 49(1): 190-196 (in Chinese).
    [16] ROSENGAUS RB, ZECHER CN, SCHULTHEIS KF, BRUCKER RM, BORDENSTEIN SR. Disruption of the termite gut microbiota and its prolonged consequences for fitness[J]. Applied and Environmental Microbiology, 2011, 77(13): 4303-4312.
    [17] SAETHER OA. Glossary of chironomid morphology terminology (Diptera: Chironomidae)[J]. Entomologica Scandinavica Supplement, 1980, 14: 1-51.
    [18] FADROSH DW, MA B, GAJER P, SENGAMALAY N, OTT S, BROTMAN RM, RAVEL J. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform[J]. Microbiome, 2014, 2(1): 6.
    [19] BOLGER AM, LOHSE M, USADEL B. Trimmomatic: a flexible trimmer for Illumina sequence data[J]. Bioinformatics, 2014, 30(15): 2114-2120.
    [20] MARTIN M. Cutadapt removes adapter sequences from high-throughput sequencing reads[J]. EMBnet Journal, 2011, 17: 10-12.
    [21] EDGAR RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10(10): 996-998.
    [22] EDGAR RC, HAAS BJ, CLEMENTE JC, QUINCE C, KNIGHT R. UCHIME improves sensitivity and speed of chimera detection[J]. Bioinformatics, 2011, 27(16): 2194-2200.
    [23] QUAST C, PRUESSE E, YILMAZ P, GERKEN J, SCHWEER T, YARZA P, PEPLIES J, GLÖCKNER FO. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools[J]. Nucleic Acids Research, 2013, 41(database issue): 590-596.
    [24] HALL M, BEIKO RG. 16S rRNA gene analysis with QIIME2[J]. Methods in Molecular Biology, 2018, 1849: 113-129.
    [25] SCHLOSS PD, WESTCOTT SL, RYABIN T, HALL JR, HARTMANN M, HOLLISTER EB, LESNIEWSKI RA, OAKLEY BB, PARKS DH, ROBINSON CJ, SAHL JW, STRES B, THALLINGER GG, van HORN DJ, WEBER CF. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities[J]. Applied and Environmental Microbiology, 2009, 75(23): 7537-7541.
    [26] SHANNON P, MARKIEL A, OZIER O, BALIGA NS, WANG JT, RAMAGE D, AMIN N, SCHWIKOWSKI B, IDEKER T. Cytoscape: a software environment for integrated models of biomolecular interaction networks[J]. Genome Research, 2003, 13(11): 2498-2504.
    [27] ABHAUER KP, WEMHEUER B, DANIEL R, MEINICKE P. Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data[J]. Bioinformatics, 2015, 31(17): 2882-2884.
    [28] KANEHISA M, FURUMICHI M, SATO Y, KAWASHIMA M, ISHIGURO-WATANABE M. KEGG for taxonomy-based analysis of pathways and genomes[J]. Nucleic Acids Research, 2022: gkac963.
    [29] 陈伟, 陈霞, 李娟, 马欣然, 崔薇, 渠凤甜, 谢桂林, 赵红庆. 三种跳虫肠道菌群的多样性分析及功能预测[J]. 昆虫学报, 2020, 63(4): 450-461. CHEN W, CHEN X, LI J, MA XR, CUI W, QU FT, XIE GL, ZHAO HQ. Diversity analysis and function prediction of gut microbiota in three springtail species[J]. Acta Entomologica Sinica, 2020, 63(4): 450-461 (in Chinese).
    [30] 宋兆齐, 王莉, 刘秀花, 梁峰. 云南和西藏四处热泉中的厚壁菌门多样性[J]. 生物技术, 2015, 25(5): 481-486. SONG ZQ, WANG L, LIU XH, LIANG F. Diversities of Firmicutes in four hot springs in Yunnan and Tibet[J]. Biotechnology, 2015, 25(5): 481-486 (in Chinese).
    [31] 王皓, 钱琪卉, 丁瑞睿, 钟耀华, 周春晓, 王振, 巫厚长. 复合潜流人工湿地对农村生活污水的净化效果及其微生物群落结构特征[J]. 安徽农业大学学报(自然科学版), 2021, 47(6): 962. WANG H, QIAN QH, DING RR, ZONG YH, ZHOU CX, WANG Z, WU HZ. Performances of a hybrid horizontal subsurface-flow constructed wetland system treating on rural domestic sewage and its microbial community structure characteristics[J]. Journal of Anhui Agricultural University (Natural Science Edition), 2021, 47(6): 962 (in Chinese).
    [32] CHEN Y, ZHOU H, LAI Y, CHEN Q, YU XQ, WANG X. Gut microbiota dysbiosis influences metabolic homeostasis in Spodoptera frugiperda[J]. Frontiers in Microbiology, 2021, 12: 727434.
    [33] ZHANG X, LI TP, ZHOU CY, ZHAO DS, ZHU YX, BING XL, HHUANG HJ, HONG XY. Antibiotic exposure perturbs the bacterial community in the small brown planthopper Laodelphax striatellus[J]. Insect Science, 2020, 27(5): 895-907.
    [34] ZHANG X, WANG X, GUO Z, LIU X, WANG P, YUAN X, LI Y. Antibiotic treatment reduced the gut microbiota diversity, prolonged the larval development period and lessened adult fecundity of Grapholita molesta (Lepidoptera: Tortricidae)[J]. Insects, 2022, 13(9): 838.
    [35] KERRY J, COUNE R, GILROY D, HINEY M, SMITH P. Spatial distribution of oxytetracycline and elevated frequencies of oxytetracycline resistance in sediments beneath a marine salmon farm following oxytetracycline therapy[J]. Aquaculture, 1996, 145(1/4): 31-39.
    [36] DAVIES J, DAVIES D. Origins and evolution of antibiotic resistance[J]. Microbiology and Molecular Biology Reviews, 2010, 74(3): 417-433.
    [37] HATHOUT AS, ALY SE. Biological detoxification of mycotoxins: a review[J]. Annals of Microbiology, 2014, 64(3): 905-919.
    [38] CHEN X, ZUO Q, HAI YD, SUN XJ. Lactulose: an indirect antioxidant ameliorating inflammatory bowel disease by increasing hydrogen production[J]. Medical Hypotheses, 2011, 76(3): 325-327.
    [39] NI QR, ZHANG P, LI Q, HAN ZY. Oxidative stress and gut microbiome in inflammatory skin diseases[J]. Frontiers in Cell and Developmental Biology, 2022, 10: 849985.
    [40] LI T, ZHANG Q, ZHANG X, WAN Q, WANG S, ZHANG R, ZHANG Z. Transcriptome and microbiome analyses of the mechanisms underlying antibiotic-mediated inhibition of larval development of the saprophagous insect Musca domestica (Diptera: Muscidae)[J]. Ecotoxicology and Environmental Safety, 2021, 223: 112602.
    [41] SENDEROVICH Y, HALPERN M. The protective role of endogenous bacterial communities in chironomid egg masses and larvae[J]. The ISME Journal, 2013, 7(11): 2147-2158.
    [42] SUN ZY, LIU Y, XU HX, YAN CC. Genome-wide identification of P450 genes in chironomid Propsilocerus akamusi reveals candidate genes involved in gut microbiota-mediated detoxification of chlorpyrifos[J]. Insects, 2022, 13(9): 765.
    [43] DELLA-NEGRA O, CHAUSSONNERIE S, FONKNECHTEN N, BARBANCE A, MUSELET D, MARTIN DE, FOUTEAU S, FISCHER C, SAAIDI PL, le PASLIER D. Transformation of the recalcitrant pesticide chlordecone by Desulfovibrio sp. 86 with a switch from ring-opening dechlorination to reductive sulfidation activity[J]. Scientific Reports, 2020, 10(1): 1-14.
    [44] 周石磊, 黄廷林, 张春华, 白士远, 何秀秀. 基于MiSeq的好氧反硝化菌源水脱氮的种群演变[J]. 中国环境科学, 2016, 36(4): 1125-1135. ZHOU SL, HUANG TL, ZHANG CH, BAI SY, HE XX. Bacterial community structures of aerobic denitrification bacteria nitrogen removal process in source water experiment by using MiSeq high-throughput sequencing technique[J]. China Environmental Science, 2016, 36(4): 1125-1135 (in Chinese).
    [45] XIONG W, JOUSSET A, GUO S, KARLSSON I, ZHAO QY, WU HS, KOWALCHUK GA, SHEN QR, LI R, GEIGEN S. Soil protist communities form a dynamic hub in the soil microbiome[J]. The ISME Journal, 2018, 12(2): 634-638.
    [46] HERNANDEZ DJ, DAVID AS, MENGES ES, SEARCY CA, AFKHAMI ME. Environmental stress destabilizes microbial networks[J]. The ISME Journal, 2021, 15(6): 1722-1734.
    [47] 陈建秀, 麻智春, 严海娟, 张峰. 跳虫在土壤生态系统中的作用[J]. 生物多样性, 2007, 15(2): 154-161. CHEN JX, MA ZC, YAN HJ, ZHANG F. Roles of springtails in soil ecosystem[J]. Biodiversity Science, 2007, 15(2): 154-161 (in Chinese).
    [48] CUMMINS KW, KLUG MJ. Feeding ecology of stream invertebrates[J]. Feeding Ecology of Stream Invertebrates, 1979, 10: 147-172.
    [49] HENRIQUES-OLIVEIRA A, NESSIMIAN J, DORVILLÉ L. Feeding habits of chironomid larvae (Insecta: Diptera) from a stream in the Floresta Da Tijuca, Rio de Janeiro, Brazil[J]. Brazilian Journal of Biology, 2003, 63(2): 269-281.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

孙文雯,马微微,徐海轩,曹威,闫春财,孙泽阳. 利福平对红裸须摇蚊幼虫肠道微生物群落结构及功能的潜在影响[J]. 微生物学报, 2023, 63(7): 2848-2863

复制
分享
文章指标
  • 点击次数:259
  • 下载次数: 1082
  • HTML阅读次数: 931
  • 引用次数: 0
历史
  • 收稿日期:2022-11-03
  • 最后修改日期:2023-01-11
  • 在线发布日期: 2023-07-05
  • 出版日期: 2023-07-04
文章二维码