全基因组测序揭示两株泡菜源植物乳杆菌基因型差异和潜在益生特性
作者:
基金项目:

四川省科技创新苗子工程培育项目(2022110)


Whole-genome sequencing reveals genotypic differences and potential probiotic properties of two Paocai-derived Lactiplantibacillus plantarum strains
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [34]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】为了探究植物乳杆菌(Lactiplantibacillus plantarum)基因型差异和潜在益生特性,采用全基因组测序技术对其进行测序并解析基因组序列及生物特性。【方法】本研究基于HiSeq和PacBio测序平台,对团队前期从四川多代泡菜中分离获得、体外益生特性评价良好的潜在益生菌菌株L. plantarum Eden-Star PC06和L. plantarum Eden-Star PC108的全基因组进行测序。利用相关生物信息学软件对原始数据进行组装及其后续的功能注释、分子进化、菌株安全性、次级代谢产物合成基因簇以及益生特性相关基因进行分析。【结果】通过基因组装得到了2株植物乳杆菌的全基因组信息,L. plantarum Eden-Star PC06和Eden-Star PC108基因组大小分别为3 163 902 bp和3 205 054 bp;GC含量分别为44.68%和44.67%;分别包含3 161个和3 197个DNA编码序列;功能基因数据库比对结果显示2株菌在碳水化合物利用、氨基酸利用和糖基转移酶等基因上得到大量注释;通过比对数据库,在2株植物乳杆菌全基因组上发现了4个与肠液耐受相关的胆盐水解酶基因、完整的植物乳杆菌细菌素合成相关基因簇和抵御多种胁迫的益生相关基因。【结论】本研究通过全基因组测序在基因水平上探究了L. plantarum Eden-Star PC06和Eden-Star PC108基因型差异和益生特性基因,证明L. plantarum Eden-Star PC06和Eden-Star PC108是2株有应用前景的益生菌菌株,以期为筛选优良益生菌菌株和评价其益生特性提供遗传学基础。

    Abstract:

    [Objective] To explore the genotypic differences and potential probiotic properties of Lactiplantibacillus plantarum by using whole genome sequencing technology. [Methods] Based on the HiSeq and PacBio, this study sequenced the potential probiotic strains L. plantarum Eden-Star PC06 and L. plantarum Eden-Star PC108 with good evaluation of in vitro probiotic properties isolated from Sichuan multi-generation Paocai in the previous study. The relevant bioinformatics software was used to assemble the raw data and analyze the subsequent functional annotation, molecular evolution, strain safety, secondary metabolite synthesis gene clusters, and probiotic-related genes. [Results] The whole-genome information of two L. plantarum strains was obtained through gene assembly, and the genome sizes of L. plantarum Eden-Star PC06 and Eden-Star PC108 were 3 163 902 bp and 3 205 054 bp, respectively. The GC content of Eden-Star PC06 and Eden-Star PC108 was 44.68% and 44.67%, respectively, and they contained 3 161 and 3 197 DNA coding sequences, respectively. The comparison results of functional gene database showed that the two strains were extensively annotated on genes such as carbohydrate utilization, amino acid utilization, and glycosyltransferase. We found four genes related to intestinal fluid tolerance, intact gene clusters related to bacteriocin synthesis of L. plantarum, and probiotic genes resistant to multiple stresses on the whole genome of two strains of L. plantarum in the comparison database. [Conclusion] This study explores the genotypic differences and potential probiotic properties of two L. plantarum strains Eden-Star PC06 and Eden-Star PC108 at the gene level by whole-genome sequencing, and it has proved that L. plantarum Eden-Star PC06 and Eden-Star PC108 are potential probiotic strains with promising applications. This study is expected to provide a genetic basis for screening out excellent probiotic strains and evaluating their probiotic properties.

    参考文献
    [1] la FATA G, WEBER P. Probiotics and the gut immune system: indirect regulation[J]. Probiotics and Antimicrobial Proteins, 2018, 10(1): 11-21.
    [2] SIEZEN RJ, van HYLCKAMA VLIEG JET. Genomic diversity and versatility of Lactobacillus plantarum, a natural metabolic engineer[J]. Microbial Cell Factories, 2011, 10(Suppl 1): S3.
    [3] CHOI EA, CHANG HC. Cholesterol-lowering effects of a putative probiotic strain Lactobacillus plantarum EM isolated from kimchi[J]. LWT-Food Science and Technology, 2015, 62(1): 210-217.
    [4] WANG Y, SHANG N, QIN YX, ZHANG Y, ZHANG JL, LI PL. The complete genome sequence of Lactobacillus plantarum LPL-1, a novel antibacterial probiotic producing class IIa bacteriocin[J]. Journal of Biotechnology, 2018, 266: 84-88.
    [5] 刘超楠, 蔡熙姮, 张新宇, 刘晗璐. 植物乳杆菌基因组学研究进展[J]. 食品科技, 2020, 45(11): 1-7. LIU CN, CAI XH, ZHANG XY, LIU HL. Progress in genomics of Lactobacillus plantarum[J]. Food Science and Technology, 2020, 45(11): 1-7 (in Chinese).
    [6] EVANOVICH E, de SOUZA MENDONÇA MATTOS PJ, GUERREIRO JF. Comparative genomic analysis of Lactobacillus plantarum: an overview[J]. International Journal of Genomics, 2019, 2019: 1-11.
    [7] KIM E, CHANG HC, KIM HY. Complete genome sequence of Lactobacillus plantarum EM, A putative probiotic strain with the cholesterol-lowering effect and antimicrobial activity[J]. Current Microbiology, 2020, 77(8): 1871-1882.
    [8] WICK RR, JUDD LM, GORRIE CL, HOLT KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads[J]. PLoS Computational Biology, 2017, 13(6): e1005595.
    [9] GRISSA I, VERGNAUD G, POURCEL C. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats[J]. Nucleic Acids Research, 2007, 35(suppl_2): W52-W57.
    [10] BUCHFINK B, XIE C, HUSON DH. Fast and sensitive protein alignment using DIAMOND[J]. Nature Methods, 2015, 12(1): 59-60.
    [11] CHOKESAJJAWATEE N, SANTIYANONT P, CHANTARASAKHA K, KOCHARIN K, THAMMARONGTHAM C, LERTAMPAIPORN S, VORAPREEDA T, SRISUK T, WONGSURAWAT T, JENJAROENPUN P, NOOKAEW I, VISESSANGUAN W. Safety assessment of a nham starter culture Lactobacillus plantarum BCC9546 via whole-genome analysis[J]. Scientific Reports, 2020, 10: 10241.
    [12] 宋宇琴. 德氏乳杆菌保加利亚亚种的群体遗传学和功能基因组学研究[D]. 呼和浩特: 内蒙古农业大学博士学位论文, 2018. SONG YQ. Study on population genetics and functional genomics of Lactobacillus delbrueckii subsp. bulgaricus[D]. Hohhot: Doctoral Dissertation of Inner Mongolia Agricultural University, 2018 (in Chinese).
    [13] TATUSOV RL, GALPERIN MY, NATALE DA, KOONIN EV. The COG database: a tool for genome-scale analysis of protein functions and evolution[J]. Nucleic Acids Research, 2000, 28(1): 33-36.
    [14] van den NIEUWBOER M, van HEMERT S, CLAASSEN E, de VOS WM. Lactobacillus plantarum WCFS1 and its host interaction: a dozen years after the genome[J]. Microbial Biotechnology, 2016, 9(4): 452-465.
    [15] OGATA H, GOTO S, SATO K, FUJIBUCHI W, BONO H, KANEHISA M. KEGG: Kyoto encyclopedia of genes and genomes[J]. Nucleic Acids Research, 1999, 27(1): 29-34.
    [16] NGUYEN STC, FREUND HL, KASANJIAN J, BERLEMONT R. Function, distribution, and annotation of characterized cellulases, xylanases, and chitinases from CAZy[J]. Applied Microbiology and Biotechnology, 2018, 102(4): 1629-1637.
    [17] GILFIX BM. Congenital disorders of glycosylation and the challenge of rare diseases[J]. Human Mutation, 2019, 40(8): 1010-1012.
    [18] WARDMAN JF, BAINS RK, RAHFELD P, WITHERS SG. Carbohydrate-active enzymes (CAZymes) in the gut microbiome[J]. Nature Reviews Microbiology, 2022, 20(9): 542-556.
    [19] CHEN LH, YANG J, YU J, YAO ZJ, SUN LL, SHEN Y, JIN Q. VFDB: a reference database for bacterial virulence factors[J]. Nucleic Acids Research, 2005, 33(suppl_1): D325-D328.
    [20] 孙杰, 沈敏, 吴恬菲, 伦永志. 人肠源植物乳杆菌PUM1785全基因组测序分析与功能挖掘[J]. 微生物学杂志, 2021, 41(5): 69-79. SUN J, SHEN M, WU TF, LUN YZ. Whole genome sequencing analysis and function mining of Lactobacillus plantarum PUM1785 from human intestine[J]. Journal of Microbiology, 2021, 41(5): 69-79 (in Chinese).
    [21] ZHANG B, ZUO FL, YU R, ZENG Z, MA HQ, CHEN SW. Comparative genome-based identification of a cell wall-anchored protein from Lactobacillus plantarum increases adhesion of Lactococcus lactis to human epithelial cells[J]. Scientific Reports, 2015, 5: 14109.
    [22] 史梅莓, 伍亚龙, 杨恺, 吕鹏军, 汪冬冬, 唐垚, 王勇, 张其圣. 四川泡菜中潜在益生性植物乳杆菌的筛选及安全性评价[J]. 食品工业科技, 2022, 43(22): 165-172. SHI MM, WU YL, YANG K, LÜ PJ, WANG DD, TANG Y, WANG Y, ZHANG QS. Screening and safety evaluation of potential probiotic Lactobacillus plantarum in Sichuan Paocai[J]. Science and Technology of Food Industry, 2022, 43(22): 165-172 (in Chinese).
    [23] ALCOCK BP, RAPHENYA AR, LAU TTY, TSANG KK, BOUCHARD M, EDALATMAND A, HUYNH W, NGUYEN AL V, CHENG AA, LIU SH, MIN SY, MIROSHNICHENKO A, TRAN HK, WERFALLI RE, NASIR JA, OLONI M, SPEICHER DJ, FLORESCU A, SINGH B, FALTYN M, et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database[J]. Nucleic Acids Research, 2020, 48(D1): D517-D525.
    [24] DEGIROLAMO C, RAINALDI S, BOVENGA F, MURZILLI S, MOSCHETTA A. Microbiota modification with probiotics induces hepatic bile acid synthesis via downregulation of the fxr-Fgf15 axis in mice[J]. Cell Reports, 2014, 7(1): 12-18.
    [25] BRON PA, MARCO M, HOFFER SM, van MULLEKOM E, de VOS WM, KLEEREBEZEM M. Genetic characterization of the bile salt response in Lactobacillus plantarum and analysis of responsive promoters in vitro and in situ in the gastrointestinal tract[J]. Journal of Bacteriology, 2004, 186(23): 7829-7835.
    [26] LAMBERT JM, BONGERS RS, de VOS WM, KLEEREBEZEM M. Functional analysis of four bile salt hydrolase and penicillin acylase family members in Lactobacillus plantarum WCFS1[J]. Applied and Environmental Microbiology, 2008, 74(15): 4719-4726.
    [27] van BOKHORST-VAN de VEEN H, LEE IC, MARCO ML, WELS M, BRON PA, KLEEREBEZEM M. Modulation of Lactobacillus plantarum gastrointestinal robustness by fermentation conditions enables identification of bacterial robustness markers[J]. PLoS One, 2012, 7(7): e39053.
    [28] KUMAR R, GROVER S, KAUSHIK JK, BATISH VK. IS30-related transposon mediated insertional inactivation of bile salt hydrolase (bsh1) gene of Lactobacillus plantarum strain Lp20[J]. Microbiological Research, 2014, 169(7/8): 553-560.
    [29] COSTABILE A, BUTTARAZZI I, KOLIDA S, QUERCIA S, BALDINI J, SWANN JR, BRIGIDI P, GIBSON GR. An in vivo assessment of the cholesterol-lowering efficacy of Lactobacillus plantarum ECGC 13110402 in normal to mildly hypercholesterolaemic adults[J]. PLoS One, 2017, 12(12): e0187964.
    [30] SÁENZ Y, ROJO-BEZARES B, NAVARRO L, DÍEZ L, SOMALO S, ZARAZAGA M, RUIZ-LARREA F, TORRES C. Genetic diversity of the pln locus among oenological Lactobacillus plantarum strains[J]. International Journal of Food Microbiology, 2009, 134(3): 176-183.
    [31] STURME MHJ, FRANCKE C, SIEZEN RJ, de VOS WM, KLEEREBEZEM M. Making sense of quorum sensing in lactobacilli: a special focus on Lactobacillus plantarum WCFS1[J]. Microbiology (Reading, England), 2007, 153(Pt 12): 3939-3947.
    [32] DIEP DB, STRAUME D, KJOS M, TORRES C, NES IF. An overview of the mosaic bacteriocin pln loci from Lactobacillus plantarum[J]. Peptides, 2009, 30(8): 1562-1574.
    [33] de VUYST L, AVONTS L, NEYSENS P, HOSTE B, VANCANNEYT M, SWINGS J, CALLEWAERT R. The lactobin A and amylovorin L471 encoding genes are identical, and their distribution seems to be restricted to the species Lactobacillus amylovorus that is of interest for cereal fermentations[J]. International Journal of Food Microbiology, 2004, 90(1): 93-106.
    [34] KIM WS, KHUNAJAKR N, REN J, DUNN NW. Conservation of the major cold shock protein in lactic acid bacteria[J]. Current Microbiology, 1998, 37(5): 333-336.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

伍亚龙,杨恺,史梅莓,吕鹏军,王勇,张其圣. 全基因组测序揭示两株泡菜源植物乳杆菌基因型差异和潜在益生特性[J]. 微生物学报, 2023, 63(7): 2880-2898

复制
分享
文章指标
  • 点击次数:475
  • 下载次数: 919
  • HTML阅读次数: 1292
  • 引用次数: 0
历史
  • 收稿日期:2022-11-08
  • 最后修改日期:2023-02-07
  • 在线发布日期: 2023-07-05
  • 出版日期: 2023-07-04
文章二维码