持续低氧条件下大鼠肠道微生物变化及其与心肌损伤的关联研究
作者:
基金项目:

国家自然科学基金(81790632,31970863)


Alterations in gut microbiota and their associations with cardiac injury in rats after exposure to continuous normobaric hypoxia
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [38]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】研究持续性常压低氧对大鼠肠道微生物的影响,并分析其与低氧性心肌肥厚的关联性。【方法】雌性无特异性病原体(specific-pathogen-free, SPF)级SD (Sprague-Dawley)大鼠,按随机数字表法分为2组:常氧组和低氧组。实验开始后,低氧组大鼠置于低氧舱中,氧气浓度设定为10%,持续暴露30 d,常氧组大鼠正常条件饲养。每天记录大鼠体重,并于低氧前(0 d)和低氧后(30 d)分别收集粪便进行16S rRNA基因扩增子测序,测定肠道微生物组的变化。实验结束后进行血常规、血生化和器官指数分析;采用实时定量聚合酶链式反应(quantitative real-time polymerase chain reaction, qRT-PCR)检测右心室组织中4种分子标志物心房利钠肽基因(atrial natriuretic peptide, ANP)、脑钠肽基因(brain natriuretic peptide, BNP)、心肌肌球蛋白重链6基因(myosin heavy chain 6, Myh6)、心肌肌球蛋白重链7基因(myosin heavy chain 7, Myh7)的mRNA表达;并在肠道微生物组和各类指标之间进行Spearman关联分析。【结果】低氧大鼠体重降低,红细胞数量、红细胞比容、血红蛋白浓度均明显升高。低氧大鼠右心指数显著升高,血清肌酸激酶(creatine kinase, CK)和乳酸脱氢酶(lactate dehydrogenase, LDH)活性增高,BNPMyh7的表达显著升高而Myh6的表达降低,表明低氧导致大鼠心肌损伤并发生了右心室病理性肥厚。低氧改变了大鼠肠道微生物的α多样性和β多样性;线性判别分析效应大小(linear discriminant analysis effect size, LEfSe)分析结果提示常氧组大鼠的普雷沃氏菌科(Prevotellaceae)和毛螺菌科(Lachnospiraceae)相对丰度较高,而低氧组大鼠的乳酸杆菌科(Lactobacilliaceae)和乳杆菌属(Lactobacillus)相对丰度较高。LDH与摩根菌属(Monoglobus)和帕鲁迪杆菌(Papillibacter)正相关,与苜蓿科(Defluviitaleaceae_UCG-011)负相关;CK与菌株RF39正相关;Myh6的表达量与Prevotellaceae_NK3B31_group和幽门螺杆菌(Helicobacter)正相关;BNP的表达量与瘤胃球菌科(Ruminococcaceae_UCG_009)正相关。【结论】持续性低氧显著改变了大鼠肠道微生物的丰富度、均匀度和菌群结构;该变化与心肌损伤指标之间存在显著相关性,表明肠道菌群可能在低氧性心肌肥厚中发挥重要作用。

    Abstract:

    [Objective] To investigate the alterations in gut microbiota and their associations with the biomarkers of myocardial hypertrophy induced by continuous normobaric hypoxia in rats. [Methods] Sixteen specific-pathogen-free female Sprague-Dawley rats were randomly assigned into two groups: the normoxia group and the hypoxia group. After adaptation for 1 week, the rats in the hypoxia group were immediately placed into the hypoxic chamber with the oxygen concentration at 10% for 30 d, and the rats without hypoxia treatment were set as the control. We monitored the body weight of each rat daily, determined the haematological and biochemical parameters as well as the organ coefficients at the end of the experiments. Further, we collected stools from each rat before (day 0) and after hypoxia challenge (day 30) to test the gut microbiota by using 16S rRNA gene sequencing. Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to determine the mRNA levels of gene ANP (atrial natriuretic peptide), BNP (brain natriuretic peptide), Myh6 (myosin heavy chain 6), and Myh7 (myosin heavy chain 7), the biomarkers of myocardial hypertrophy in the right ventricular tissue. Spearman correlation analysis was performed to explore the links between intestinal microbiomes and parameters. [Results] Hypoxia reduced the body weight, increased the erythrocyte count, hemoglobin level, and hematocrit, and failed to affect the counts of leukocytes and platelets. Hypoxia increased the right ventricular index, enhanced the activities of creatine kinase (CK) and lactate dehydrogenase (LDH) in the serum, and up-regulated the mRNA levels of BNP and Myh7 in right ventricular tissue, which suggested pathologically myocardial hypertrophy after hypoxia challenge for 30 d. Hypoxia significantly altered the alpha diversity and beta diversity of gut microbiota in rats. The results of linear discriminant analysis effect size (LEfSe) showed that the rats exposed to hypoxia had lower relative abundance of Prevotellaceae and Lachnospiraceae and higher relative abundance of Lactobacilliaceae and Lactobacillus than the control rats. LDH was positively correlated with Monoglobus and Papilibacter and negatively correlated with Defluvialeaceae_UCG-011. CK was positively correlated with strain RF39. The expression of BNP was positively correlated with Ruminocochaceae_UCG_009, and that of Myh6 was positively correlated with Prevotellaceae_NK3B31_group and Helicobacter.[Conclusion] The species richness, evenness, and composition of gut microbiota in rats are greatly affected after exposure to continuous normobaric hypoxia. The changes of gut microbiota have correlations with the biomarkers of myocardial hypertrophy induced by hypoxia, indicating that gut microbiota plays a crucial role in hypoxia-induced myocardial hypertrophy.

    参考文献
    [1] DAVIES SW, WEDZICHA JA. Hypoxia and the heart[J]. British Heart Journal, 1993, 69(1): 3-5.
    [2] PENA E, BRITO J, EL ALAM S, SIQUES P. Oxidative stress, kinase activity and inflammatory implications in right ventricular hypertrophy and heart failure under hypobaric hypoxia[J]. International Journal of Molecular Sciences, 2020, 21(17): 6421.
    [3] PAN ZY, HU YC, HUANG ZY, HAN N, LI Y, ZHUANG XM, YIN JY, PENG H, GAO QS, ZHANG WP, HUANG Y, CUI YJ, BI YJ, XU ZZ, YANG RF. Alterations in gut microbiota and metabolites associated with altitude-induced cardiac hypertrophy in rats during hypobaric hypoxia challenge[J]. Science China Life Sciences, 2022, 65(10): 2093-2113.
    [4] SCHROEDER BO, BÄCKHED F. Signals from the gut microbiota to distant organs in physiology and disease[J]. Nature Medicine, 2016, 22(10): 1079-1089.
    [5] WALTER J, BRITTON RA, ROOS S. Host-microbial symbiosis in the vertebrate gastrointestinal tract and the Lactobacillus reuteri paradigm[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(suppl 1): 4645-4652.
    [6] MAKKI K, DEEHAN EC, WALTER J, BÄCKHED F. The impact of dietary fiber on gut microbiota in host health and disease[J]. Cell Host & Microbe, 2018, 23(6): 705-715.
    [7] TRIPATHI A, XU ZZ, XUE J, POULSEN O, GONZALEZ A, HUMPHREY G, MEEHAN MJ, MELNIK AV, ACKERMANN G, ZHOU D, MALHOTRA A, HADDAD GG, DORRESTEIN PC, KNIGHT R. Intermittent hypoxia and hypercapnia reproducibly change the gut microbiome and metabolome across rodent model systems[J]. mSystems, 2019, 4(2): e00058-e00019.
    [8] LUCKING EF, O’CONNOR KM, STRAIN CR, FOUHY F, BASTIAANSSEN TFS, BURNS DP, GOLUBEVA AV, STANTON C, CLARKE G, CRYAN JF, O’HALLORAN KD. Chronic intermittent hypoxia disrupts cardiorespiratory homeostasis and gut microbiota composition in adult male Guinea-pigs[J]. eBioMedicine, 2018, 38: 191-205.
    [9] BAI X, LIU GQ, YANG JX, ZHU JB, WANG Q, ZHOU Y, GU WQ, LA LL, LI XY. Changes in the gut microbiota of rats in high-altitude hypoxic environments[J]. Microbiology Spectrum, 2022, 10(6): e0162622.
    [10] KLEESSEN B, SCHROEDL W, STUECK M, RICHTER A, RIECK O, KRUEGER M. Microbial and immunological responses relative to high-altitude exposure in mountaineers[J]. Medicine and Science in Sports and Exercise, 2005, 37(8): 1313-1318.
    [11] ADAK A, MAITY C, GHOSH K, PATI BR, MONDAL KC. Dynamics of predominant microbiota in the human gastrointestinal tract and change in luminal enzymes and immunoglobulin profile during high-altitude adaptation[J]. Folia Microbiologica, 2013, 58(6): 523-528.
    [12] KARL JP, BERRYMAN CE, YOUNG AJ, RADCLIFFE PN, BRANCK TA, PANTOJA-FELICIANO IG, ROOD JC, PASIAKOS SM. Associations between the gut microbiota and host responses to high altitude[J]. American Journal of Physiology Gastrointestinal and Liver Physiology, 2018, 315(6): G1003-G1015.
    [13] JIA ZL, ZHAO XJ, LIU XS, ZHAO L, JIA Q, SHI JL, XU X, HAO LJ, XU ZG, ZHONG Q, YU K, CUI SJ, CHEN HN, GUO JY, LI X, HAN Y, SONG XY, ZHAO CH, BO XC, TIAN YP, et al. Impacts of the plateau environment on the gut microbiota and blood clinical indexes in Han and Tibetan individuals[J]. mSystems, 2020, 5(1): e00660-e00619.
    [14] MORENO-INDIAS I, TORRES M, MONTSERRAT JM, SANCHEZ-ALCOHOLADO L, CARDONA F, TINAHONES FJ, GOZAL D, POROYKO VA, NAVAJAS D, QUEIPO-ORTUÑO MI, FARRÉ R. Intermittent hypoxia alters gut microbiota diversity in a mouse model of sleep apnoea[J]. The European Respiratory Journal, 2015, 45(4): 1055-1065.
    [15] ADAK A, MAITY C, GHOSH K, MONDAL KC. Alteration of predominant gastrointestinal flora and oxidative damage of large intestine under simulated hypobaric hypoxia[J]. Zeitschrift Fur Gastroenterologie, 2014, 52(2): 180-186.
    [16] COPPEL J, HENNIS P, GILBERT-KAWAI E, GROCOTT MP. The physiological effects of hypobaric hypoxia versus normobaric hypoxia: a systematic review of crossover trials[J]. Extreme Physiology & Medicine, 2015, 4(1): 1-20.
    [17] RIBON A, PIALOUX V, SAUGY JJ, RUPP T, FAISS R, DEBEVEC T, MILLET GP. Exposure to hypobaric hypoxia results in higher oxidative stress compared to normobaric hypoxia[J]. Respiratory Physiology & Neurobiology, 2016, 223: 23-27.
    [18] ROSS CI, SHUTE RJ, RUBY BC, SLIVKA DR. Skeletal muscle mRNA response to hypobaric and normobaric hypoxia after normoxic endurance exercise[J]. High Altitude Medicine & Biology, 2019, 20(2): 141-149.
    [19] DOCHERTY CK, NILSEN M, MACLEAN MR. Influence of 2-methoxyestradiol and sex on hypoxia-induced pulmonary hypertension and hypoxia-inducible factor-1-A[J]. Journal of the American Heart Association, 2019, 8(5): e011628.
    [20] GIAMMANCO M, TABACCHI G, GIAMMANCO S, Di MAJO D, la GUARDIA M. Testosterone and aggressiveness[J]. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 2005, 11(4): RA136-RA145.
    [21] MAGOČ T, SALZBERG SL. FLASH: fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011, 27(21): 2957-2963.
    [22] HAAS BJ, GEVERS D, EARL AM, FELDGARDEN M, WARD DV, GIANNOUKOS G, CIULLA D, TABBAA D, HIGHLANDER SK, SODERGREN E, METHÉ B, DeSANTIS TZ, CONSORTIUM HM, PETROSINO JF, KNIGHT R, BIRREN BW. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons[J]. Genome Research, 2011, 21(3): 494-504.
    [23] BISWAS HM, SAHA RC, BISWAS NM. Hematologic and body fluid changes during simulated high altitude exposure in naproxen-treated rats[J]. The Japanese Journal of Physiology, 1996, 46(1): 67-73.
    [24] SHEPPARD RL, SWIFT JM, HALL A, MAHON RT. The influence of CO2 and exercise on hypobaric hypoxia induced pulmonary edema in rats[J]. Frontiers in Physiology, 2018, 9: 130.
    [25] HAN N, PAN ZY, HUANG ZY, CHANG YX, HOU FY, LIU GW, YANG RF, BI YJ. Effects of myeloid Hif-1β deletion on the intestinal microbiota in mice under environmental hypoxia[J]. Infection and Immunity, 2020, 89(1): e00474-e00420.
    [26] NAKANISHI K, NAKATA Y, KANAZAWA F, IMAMURA SI, MATSUOKA R, OSADA H, KAWAI T, UENOYAMA M, AURUES T, IKEDA T. Changes in myosin heavy chain and its localization in rat heart in association with hypobaric hypoxia-induced pulmonary hypertension[J]. The Journal of Pathology, 2002, 197(3): 380-387.
    [27] EBNER LA, SAMARDZIJA M, STORTI F, TODOROVA V, KARADEMIR D, BEHR J, SIMPSON F, THIERSCH M, GRIMM C. Transcriptomic analysis of the mouse retina after acute and chronic normobaric and hypobaric hypoxia[J]. Scientific Reports, 2021, 11(1): 16666.
    [28] 马燕, 马爽, 尚春香, 格日力. 低氧暴露对大鼠肠道微生物群落的影响[J]. 微生物学通报, 2019, 46(1): 120-129. MA Y, MA S, SHANG CX, GERILI. Effects of hypoxic exposure on rats’ gut microbiota[J]. Microbiology China, 2019, 46(1): 120-129 (in Chinese).
    [29] BAI X, YANG JX, LIU GQ, ZHU JB, WANG Q, GU WQ, LA LL, LI XY. Regulation of CYP450 and drug transporter mediated by gut microbiota under high-altitude hypoxia[J]. Frontiers in Pharmacology, 2022, 13: 977370.
    [30] 谢亚磊, 梅颂, 熊艳蕾, 刘诗颖, 徐成丽. 模拟海拔5 500 m低压低氧环境对大鼠HPT轴和肠道菌群的影响. 中国应用生理学杂志, 2020, 36(5): 432-437.
    XIE YL, MEI S, XIONG YL, LIU SY, XU CL. Effects of simulated 5 500 m hypobaric and hypoxia on HPT axis and intestinal flora in rats[J]. Chinese Journal of Applied Physiology, 2020, 36(5): 432-437 (in Chinese).
    [31] NIJIATI Y, MAIMAITIYIMING D, YANG T, LI H, AIKEMU A. Research on the improvement of oxidative stress in rats with high-altitude pulmonary hypertension through the participation of irbesartan in regulating intestinal flora[J]. European Review for Medical and Pharmacological Sciences, 2021, 25(13): 4540-4553.
    [32] LUO LJ, CHEN QH, YANG L, ZHANG ZX, XU JH, GOU DM. MSCs therapy reverse the gut microbiota in hypoxia-induced pulmonary hypertension mice[J]. Frontiers in Physiology, 2021, 12: 712139.
    [33] HU YC, PAN ZY, HUANG ZY, LI Y, HAN N, ZHUANG XM, PENG H, GAO QS, WANG Q, LEE BJY, ZHANG HP, YANG RF, BI YJ, XU ZZ. Gut microbiome-targeted modulations regulate metabolic profiles and alleviate altitude-related cardiac hypertrophy in rats[J]. Microbiology Spectrum, 2022, 10(1): e0105321.
    [34] XUE J, ALLABAND C, ZHOU D, POULSEN O, MARTINO C, JIANG LJ, TRIPATHI A, ELIJAH E, DORRESTEIN PC, KNIGHT R, ZARRINPAR A, HADDAD GG. Influence of intermittent hypoxia/hypercapnia on atherosclerosis, gut microbiome, and metabolome[J]. Frontiers in Physiology, 2021, 12: 663950.
    [35] CHEN YX, LIU YZ, WANG Y, CHEN XW, WANG CL, CHEN XH, YUAN X, LIU LL, YANG J, ZHOU XY. Prevotellaceae produces butyrate to alleviate PD-1/PD-L1 inhibitor-related cardiotoxicity via PPARα-CYP4X1 axis in colonic macrophages[J]. Journal of Experimental & Clinical Cancer Research: CR, 2022, 41(1): 1.
    [36] SUN LL, JIA HM, LI JJ, YU M, YANG Y, TIAN D, ZHANG HW, ZOU ZM. Cecal gut microbiota and metabolites might contribute to the severity of acute myocardial ischemia by impacting the intestinal permeability, oxidative stress, and energy metabolism[J]. Frontiers in Microbiology, 2019, 10: 1745.
    [37] SHI HR, GAO Y, DONG Z, YANG JE, GAO RF, LI X, ZHANG SQ, MA LL, SUN XL, WANG Z, ZHANG F, HU K, SUN AJ, GE JB. GSDMD-mediated cardiomyocyte pyroptosis promotes myocardial I/R injury[J]. Circulation Research, 2021, 129(3): 383-396.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王珍,周亚洲,王立坤,黄自然,常宇骁,侯凤仪,张欢,凌慧,孙一凡,谭亚芳,杨瑞馥,毕玉晶,潘志远. 持续低氧条件下大鼠肠道微生物变化及其与心肌损伤的关联研究[J]. 微生物学报, 2023, 63(8): 3054-3067

复制
分享
文章指标
  • 点击次数:313
  • 下载次数: 748
  • HTML阅读次数: 1009
  • 引用次数: 0
历史
  • 收稿日期:2022-11-21
  • 最后修改日期:2023-02-07
  • 在线发布日期: 2023-08-03
  • 出版日期: 2023-08-04
文章二维码