鸭疫里氏杆菌hemH基因功能初步鉴定及其缺失株的转录组学分析
作者:
基金项目:

国家自然科学基金(32072825,32273003);四川省自然科学基金(2022NSFSC0007)


Functional identification of hemH and transcriptomic analysis of hemH mutant of Riemerella anatipestifer
Author:
  • WANG Mengying

    WANG Mengying

    Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China;Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China;Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Mafeng

    LIU Mafeng

    Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China;Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China;Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHENG Anchun

    CHENG Anchun

    Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China;Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China;Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [41]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    血红素是绝大多数细菌生长繁殖所必需的一种营养物质,其参与了细菌多种重要的生理过程。细菌可以通过自身合成和从外界摄取2种方式获得血红素。然而过多的血红素对细菌是有毒性的,细菌则会利用外排、螯合和降解等多种方式减轻血红素毒性。鸭疫里氏杆菌(Riemerella anatipestifer, RA)是一种感染禽类的革兰氏阴性菌,前期研究表明该菌可通过转运的方式从外界环境摄取血红素。然而,是否该菌也可以自身合成血红素未知。基因组分析发现鸭疫里氏杆菌ATCC 11845菌株中的基因RA0C_RS08070编码铁螯合酶(ferrochelatase) HemH,是参与将铁插入卟啉中心,形成血红素的关键酶。hemH缺失后会导致铁离子和卟啉的积累,对细菌造成毒性。【目的】为鉴定HemH在合成血红素中的功能及查找参与鸭疫里氏杆菌铁离子和卟啉解毒相关基因。【方法】本研究构建了RA ATCC 11845ΔhemH缺失株,并检测亲本株和hemH缺失株在GCB以及GCB添加血红蛋白液体培养基中的生长情况;随后对亲本株和hemH缺失株进行转录组测序并进行比较分析。【结果】RA ATCC 11845ΔhemH缺失株不能在GCB培养基中生长,而在GCB培养基补充血红蛋白后生长良好。转录组测序及比较分析发现,与亲本株相比,hemH缺失株中有354个显著差异表达基因(differentially expressed genes, DEGs)。基因本体论(gene ontology, GO)功能富集分析发现差异表达基因主要富集在催化活性、生物调节和代谢过程等途径,京都基因和基因组百科全书(Kyoto encyclopedia of genes and genomes, KEGG)通路富集分析发现差异表达基因主要富集在氨基酸代谢、氧化磷酸化和三羧酸循环(tricarboxylic acid cycle, TCA cycle)等途径。【结论】HemH参与了血红素的合成,hemH缺失后导致大量的基因表达改变来适应代谢的改变,为进一步研究鸭疫里氏杆菌的HemH的功能奠定基础。

    Abstract:

    Heme is an essential nutrient for the growth and proliferation of most bacteria since it is involved in a variety of physiological processes. Bacteria can obtain heme through biosynthesis and acquisition from the host. However, excessive heme is toxic, and bacteria can alleviate heme toxicity by efflux, sequestration, and degradation. Riemerella anatipestifer (RA), a Gram-negative bacterium that infects birds, can transport heme from hemoglobin. However, whether RA can synthesize heme remains unknown. The genome analysis revealed that the gene RA0C_RS08070 of RA ATCC 11845 strain encodes the ferrochelatase HemH, which is a key enzyme that participates in the insertion of iron into porphyrin center to form heme. The loss of hemH leads to the accumulation of iron and porphyrin, causing toxicity to bacteria. [Objective] To identify the role of HemH in the synthesis of heme and identify the genes involved in the detoxification of iron and porphyrin in RA. [Methods] In this study, ΔhemH, the hemH-deleted mutant of RA ATCC 11845, was constructed, and the growth curves of the parental strain and ΔhemH in the GCB liquid medium and the GCB liquid medium supplemented with hemoglobin (Hb) were established. Further, the transcriptomes of the parental strain and ΔhemH were sequenced and analyzed. [Results] RA ATCC 11845ΔhemH did not grow in the GCB medium, while it grew well in the GCB medium supplemented with Hb. Transcriptome analysis revealed 354 differentially expressed genes (DEGs) between ΔhemH and the parental strain. Gene ontology (GO) functional annotation showed that the DEGs were mainly involved in catalytic activity, biological regulation, and metabolic processes. Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis showed that the DEGs were mainly enriched in amino acid metabolism, oxidative phosphorylation, and tricarboxylic acid cycle (TCA cycle). [Conclusion] HemH is involved in heme synthesis, and the mutant with the deletion of hemH changed the expression of the genes to adapt to the disorder of metabolism. This study lays a foundation for further studying the role of HemH in RA.

    参考文献
    [1] CONTRERAS H, CHIM N, CREDALI A, GOULDING CW. Heme uptake in bacterial pathogens[J]. Current Opinion in Chemical Biology, 2014, 19: 34-41.
    [2] ANZALDI LL, SKAAR EP. Overcoming the heme paradox: heme toxicity and tolerance in bacterial pathogens[J]. Infection and Immunity, 2010, 78(12): 4977-4989.
    [3] CHOBY JE, SKAAR EP. Heme synthesis and acquisition in bacterial pathogens[J]. Journal of Molecular Biology, 2016, 428(17): 3408-3428.
    [4] DAILEY HA, DAILEY TA, GERDES S, JAHN D, JAHN M, O’BRIAN MR, WARREN MJ. Prokaryotic heme biosynthesis: multiple pathways to a common essential product[J]. Microbiology and Molecular Biology Reviews: MMBR, 2017, 81(1): e00048-e00016.
    [5] HAMZA I, DAILEY HA. One ring to rule them all: trafficking of heme and heme synthesis intermediates in the metazoans[J]. Biochimica et Biophysica Acta, 2012, 1823(9): 1617-1632.
    [6] DAILEY HA, GERDES S, DAILEY TA, BURCH JS, PHILLIPS JD. Noncanonical coproporphyrin- dependent bacterial heme biosynthesis pathway that does not use protoporphyrin[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(7): 2210-2215.
    [7] LOUIE GV, BROWNLIE PD, LAMBERT R, COOPER JB, BLUNDELL TL, WOOD SP, WARREN MJ, WOODCOCK SC, JORDAN PM. Structure of porphobilinogen deaminase reveals a flexible multidomain polymerase with a single catalytic site[J]. Nature, 1992, 359(6390): 33-39.
    [8] BUNG N, PRADHAN M, SRINIVASAN H, BULUSU G. Structural insights into E. coli porphobilinogen deaminase during synthesis and exit of 1-hydroxymethylbilane[J]. PLoS Computational Biology, 2014, 10(3): e1003484.
    [9] LAYER G, REICHELT J, JAHN D, HEINZ DW. Structure and function of enzymes in heme biosynthesis[J]. Protein Science: a Publication of the Protein Society, 2010, 19(6): 1137-1161.
    [10] CAVALLARO G, DECARIA L, ROSATO A. Genome-based analysis of heme biosynthesis and uptake in prokaryotic systems[J]. Journal of Proteome Research, 2008, 7(11): 4946-4954.
    [11] HEINEMANN IU, JAHN M, JAHN D. The biochemistry of heme biosynthesis[J]. Archives of Biochemistry and Biophysics, 2008, 474(2): 238-251.
    [12] BOYNTON TO, DAUGHERTY LE, DAILEY TA, DAILEY HA. Identification of Escherichia coli HemG as a novel, menadione-dependent flavodoxin with protoporphyrinogen oxidase activity[J]. Biochemistry, 2009, 48(29): 6705-6711.
    [13] KOBAYASHI K, MASUDA T, TAJIMA N, WADA H, SATO N. Molecular phylogeny and intricate evolutionary history of the three isofunctional enzymes involved in the oxidation of protoporphyrinogen IX[J]. Genome Biology and Evolution, 2014, 6(8): 2141-2155.
    [14] PORRA RJ, FALK JE. The enzymic conversion of coproporphyrinogen 3 into protoporphyrin 9[J]. Biochemical Journal, 1964, 90(1): 69-75.
    [15] DAILEY HA, DAILEY TA. Protoporphyrinogen oxidase of Myxococcus xanthus[J]. Journal of Biological Chemistry, 1996, 271(15): 8714-8718.
    [16] DAILEY TA, DAILEY HA. Identification of an FAD superfamily containing protoporphyrinogen oxidases, monoamine oxidases, and phytoene desaturase. Expression and characterization of phytoene desaturase of Myxococcus xanthus[J]. Journal of Biological Chemistry, 1998, 273(22): 13658-13662.
    [17] CAMADRO JM, LABBE P. Purification and properties of ferrochelatase from the yeast Saccharomyces cerevisiae. Evidence for a precursor form of the protein[J]. Journal of Biological Chemistry, 1988, 263(24): 11675-11682.
    [18] OREN A, GARRITY GM. List of new names and new combinations previously effectively, but not validly, published[J]. International Journal of Systematic and Evolutionary Microbiology, 2020, 70(1): 1-5.
    [19] 程安春, 汪铭书, 陈孝跃, 朱德康, 黄城, 刘菲, 周毅, 郭宇飞, 刘兆宇, 方鹏飞. 我国鸭疫里默氏杆菌血清型调查及新血清型的发现和病原特性[J]. 中国兽医学报, 2003, 23(4): 320-323. CHENG AC, WANG MS, CHEN XY, ZHU DK, HUANG C, LIU F, ZHOU Y, GUO YF, LIU ZY, FANG PF. Epidemiology and new serotypes of Riemerella anatipestifer isolated from ducks in China and studies on their pathogenic characteristics[J]. Chinese Journal of Veterinary, 2003, 23(4): 320-323 (in Chinese).
    [20] LIU MF, LIU SQ, HUANG M, WANG YL, WANG MY, TIAN X, LI L, YANG ZS, WANG MS, ZHU DK, JIA RY, CHEN S, ZHAO XX, YANG Q, WU Y, ZHANG SQ, HUANG J, OU XM, MAO S, GAO Q, et al. An exposed outer membrane hemin-binding protein facilitates hemin transport by a TonB-dependent receptor in Riemerella anatipestifer[J]. Applied and Environmental Microbiology, 2021, 87(15): e0036721.
    [21] LIAO HB, CHENG XJ, ZHU DK, WANG MS, JIA RY, CHEN S, CHEN XY, BIVILLE F, LIU MF, CHENG AC. TonB energy transduction systems of Riemerella anatipestifer are required for iron and hemin utilization[J]. PLoS One, 2015, 10(5): e0127506.
    [22] LIU MF, WANG MY, ZHU DK, WANG MS, JIA RY, CHEN S, SUN KF, YANG Q, WU Y, CHEN XY, BIVILLE F, CHENG AC. Investigation of TbfA in Riemerella anatipestifer using plasmid-based methods for gene over-expression and knockdown[J]. Scientific Reports, 2016, 6: 37159.
    [23] LIU MF, HUANG M, HUANG L, BIVILLE F, ZHU DK, WANG MS, JIA RY, CHEN S, ZHAO XX, YANG Q, WU Y, ZHANG SQ, HUANG J, TIAN B, CHEN XY, LIU YY, ZHANG L, YU YL, PAN LC, UR REHMAN M, et al. New perspectives on Galleria mellonella larvae as a host model using Riemerella anatipestifer as a proof of concept[J]. Infection and Immunity, 2019, 87(8): e00072-e00019.
    [24] HUANG M, LIU MF, LIU JJ, ZHU DK, TANG QY, JIA RY, CHEN S, ZHAO XX, YANG Q, WU Y, ZHANG SQ, HUANG J, OU XM, MAO S, GAO Q, SUN D, WANG MS, CHENG AC. Functional characterization of fur in iron metabolism, oxidative stress resistance and virulence of Riemerella anatipestifer[J]. Veterinary Research, 2021, 52(1): 48.
    [25] LIU MF, ZHANG L, HUANG L, BIVILLE F, ZHU DK, WANG MS, JIA RY, CHEN S, SUN KF, YANG Q, WU Y, CHEN XY, CHENG AC. Use of natural transformation to establish an easy knockout method in Riemerella anatipestifer[J]. Applied and Environmental Microbiology, 2017, 83(9): e00127-e00117.
    [26] LIU MF, HUANG Y, LIU JJ, BIVILLE F, ZHU DK, WANG MS, JIA RY, CHEN S, ZHAO XX, YANG Q, WU Y, ZHANG SQ, CHEN XY, LIU YY, ZHANG L, YOU Y, YU YL, CHENG AC. Multiple genetic tools for editing the genome of Riemerella anatipestifer using a counterselectable marker[J]. Applied Microbiology and Biotechnology, 2018, 102(17): 7475-7488.
    [27] TIAN X, HUANG L, WANG MS, BIVILLE F, ZHU DK, JIA RY, CHEN S, ZHAO XX, YANG Q, WU Y, ZHANG SQ, HUANG J, ZHANG L, YU YL, CHENG AC, LIU MF. The functional identification of Dps in oxidative stress resistance and virulence of Riemerella anatipestifer CH-1 using a new unmarked gene deletion strategy[J]. Veterinary Microbiology, 2020, 247: 108730.
    [28] BRADLEY JM, SVISTUNENKO DA, WILSON MT, HEMMINGS AM, MOORE GR, Le BRUN NE. Bacterial iron detoxification at the molecular level[J]. The Journal of Biological Chemistry, 2020, 295(51): 17602-17623.
    [29] NITZAN Y, WEXLER HM, FINEGOLD SM. Inactivation of anaerobic bacteria by various photosensitized porphyrins or by hemin[J]. Current Microbiology, 1994, 29(3): 125-131.
    [30] CELIS AI, CHOBY JE, KENTRO J, SKAAR EP, DuBOIS JL. Control of metabolite flux during the final steps of heme b biosynthesis in Gram-positive bacteria[J]. Biochemistry, 2019, 58(52): 5259-5270.
    [31] WAKEMAN CA, HAMMER ND, STAUFF DL, ATTIA AS, ANZALDI LL, DIKALOV SI, CALCUTT MW, SKAAR EP. Menaquinone biosynthesis potentiates haem toxicity in Staphylococcus aureus[J]. Molecular Microbiology, 2012, 86(6): 1376-1392.
    [32] VÍTEK L, OSTROW JD. Bilirubin chemistry and metabolism, harmful and protective aspects[J]. Current Pharmaceutical Design, 2009, 15(25): 2869-2883.
    [33] NIR U, LADAN H, MALIK Z, NITZAN Y. In vivo effects of porphyrins on bacterial DNA[J]. Journal of Photochemistry and Photobiology B, Biology, 1991, 11(3/4): 295-306.
    [34] STAUFF DL, TORRES VJ, SKAAR EP. Signaling and DNA-binding activities of the Staphylococcus aureus HssR-HssS two-component system required for heme sensing[J]. Journal of Biological Chemistry, 2007, 282(36): 26111-26121.
    [35] STAUFF DL, BAGALEY D, TORRES VJ, JOYCE R, ANDERSON KL, KUECHENMEISTER L, DUNMAN PM, SKAAR EP. Staphylococcus aureus HrtA is an ATPase required for protection against heme toxicity and prevention of a transcriptional heme stress response[J]. Journal of Bacteriology, 2008, 190(10): 3588-3596.
    [36] KNIPPEL RJ, WEXLER AG, MILLER JM, BEAVERS WN, WEISS A, de CRÉCY-LAGARD V, EDMONDS KA, GIEDROC DP, SKAAR EP. Clostridioides difficile senses and hijacks host heme for incorporation into an oxidative stress defense system[J]. Cell Host & Microbe, 2020, 28(3): 411-421.e6.
    [37] SKAAR EP, GASPAR AH, SCHNEEWIND O. IsdG and IsdI, heme-degrading enzymes in the cytoplasm of Staphylococcus aureus[J]. Journal of Biological Chemistry, 2004, 279(1): 436-443.
    [38] FRAWLEY ER, CROUCH ML V, BINGHAM-RAMOS LK, ROBBINS HF, WANG WL, WRIGHT GD, FANG FC. Iron and citrate export by a major facilitator superfamily pump regulates metabolism and stress resistance in Salmonella typhimurium[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(29): 12054-12059.
    [39] KNIPPEL RJ, ZACKULAR JP, MOORE JL, CELIS AI, WEISS A, WASHINGTON MK, DuBOIS JL, CAPRIOLI RM, SKAAR EP. Heme sensing and detoxification by HatRT contributes to pathogenesis during Clostridium difficile infection[J]. PLoS Pathogens, 2018, 14(12): e1007486.
    [40] VANDERWAL AR, MAKTHAL N, PINOCHET-BARROS A, HELMANN JD, OLSEN RJ, KUMARASWAMI M. Iron efflux by PmtA is critical for oxidative stress resistance and contributes significantly to group A Streptococcus virulence[J]. Infection and Immunity, 2017, 85(6): e00091-e00017.
    [41] PI HL, HELMANN JD. Ferrous iron efflux systems in bacteria[J]. Metallomics, 2017, 9(7): 840-851.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王梦莹,刘马峰,程安春. 鸭疫里氏杆菌hemH基因功能初步鉴定及其缺失株的转录组学分析[J]. 微生物学报, 2023, 63(8): 3083-3095

复制
分享
文章指标
  • 点击次数:349
  • 下载次数: 742
  • HTML阅读次数: 637
  • 引用次数: 0
历史
  • 收稿日期:2022-11-23
  • 最后修改日期:2023-03-03
  • 在线发布日期: 2023-08-03
  • 出版日期: 2023-08-04
文章二维码