人肠道梭菌和甲烷马赛球菌协同代谢甜菜碱和胆碱产甲烷研究
作者:
基金项目:

国家自然科学基金(32070061)


Clostridium and Methanomassiliicoccus isolated from human intestine synergistically convert betaine and choline to methane
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [39]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】根据人肠道富含胆碱和甜菜碱,同时肠道微生物组中具有裂解胆碱和还原甜菜碱产三甲胺的细菌,以及利用三甲胺产甲烷的古菌,本研究探讨肠道细菌与古菌协同代谢甜菜碱和胆碱产甲烷的可能性。【方法】调查不同年龄段人群粪便中的16S rRNA基因多样性,分析肠道中古菌的菌群组成;利用定量PCR (quantitative PCR, qPCR)定量甲烷马赛球菌(Methanomassiliicoccus)特异的甲醇甲基转移酶基因mtaB和甲烷八叠球菌(Methanosarcina)及细菌的16S rRNA基因拷贝数,分析肠道中甲基营养型产甲烷古菌及总细菌的含量;宏基因组组装基因组(metagenome-assembled genomes, MAGs)分析携带甜菜碱还原酶基因grdH和胆碱裂解酶基因cutC的细菌组成。从粪便中分离代谢甜菜碱及胆碱产生三甲胺的细菌,并与分离自人肠道的甲烷马赛球菌构建共培养物,测定其协同转化甜菜碱和胆碱产甲烷的能力。【结果】年轻人粪便中含有甲烷杆菌科(Methanobacteriaceae, 82.16%)的甲烷短杆菌属(Methanobrevibacter, 49.18%)和甲烷杆菌属(Methanobacterium, 33.34%)、甲基营养型的甲烷八叠球菌科(Methanosarcinaceae, 5.67%)的甲烷八叠球菌属(Methanosarcina, 5.70%),以及甲烷马赛球菌科(Methanomassiliicoccaceae, 3.13%)的甲烷马赛球菌属(Methanomassiliicoccus, 3.14%)。而中老年人粪便中的甲烷古菌多样性较低,也未检测到甲烷马赛球菌。qPCR定量分析显示年轻人比中老年人肠道的总古菌含量高3.11倍,其中甲烷马赛球菌高6.53倍、甲烷八叠球菌高5.52倍,总细菌含量高2.90倍。宏基因组分析组装了229个细菌基因组,其中42个携带基因grdHcutC,这些细菌属于毛螺菌科(Lachnospiraceae)、肠杆菌科(Enterobacteriaceae)和梭菌科(Clostridiaceae)等。从粪便中分离到恶名梭菌(Clostridium malenominatum) B8,菌株B8与卢米尼甲烷马赛球菌(Methanomassiliicoccus luminyensis) B10共培养物可降解47.03%的甜菜碱和25.83%胆碱,并产生甲烷,在培养液中检测到三甲胺先积累后被降解。【结论】人肠道细菌恶名梭菌B8和卢米尼甲烷马赛球菌B10可协同代谢甜菜碱和胆碱产甲烷,推测它们在人肠道中可将部分食物中的甜菜碱和胆碱代谢产生甲烷。

    Abstract:

    [Objective] To explore the feasibility of using Clostridium and Methanomassiliicoccus from human intestine to synergistically convert betaine and choline to methane. [Methods] Illumina sequencing of the 16S rRNA gene was performed to survey the diversity of archaea in the feces from healthy people of 20-40 years old and over 40 years old. The Methanomassiliicoccus-specific mtaB gene and Methanomassiliicoccus-specific 16S rRNA gene were quantitated by quantitative PCR (qPCR) to quantify the trimethylamine-utilizing methanogens in human intestine. Metagenome-assembled genomes (MAGs) were reconstructed from metagenome data for the identification of the intestinal bacteria carrying the betaine reductase gene grdH and choline trimethylamine-lyase gene cutC. The bacteria that reduced betaine and choline were isolated from feces and used to construct the coculture with Methanomassiliicoccus. The potential of the coculture for producing methane from betaine and choline was then determined. [Results] The main methanogenic archaea in the intestine of the 20-40 years old included Methanobrevibacter (49.18%) and Methanobacterium (33.34%) affiliating to Methanobacteriaceae (82.16%), Methanosarcina (5.70%) of Methanosarcinaceae (5.67%), and Methanomassiliicoccus (3.14%) of Methanosassilicoccaceae (3.13%). The methanogen diversity was lower in the feces from the people over 40 years old, from whom Methanosassilicoccaceae was not detected. Quantitative PCR determined that the total abundance of archaea and bacteria in the people of 20-40 years old was 3.11 and 2.90 folds, respectively, higher than in those over 40 years old. Specifically, the abundance of Methanomassiliicoccus and Methanosarcina was 6.53 and 5.52 folds higher, respectively. A total of 229 bacterial MAGs were obtained from the fecal specimens, in which 42 MAGs carried genes grdH and cutC and were affiliated to Lachnospiraceae, Enterobacteriaceae, and Clostridiaceae. Clostridium malenominatum B8 was isolated from the fecal specimens. The co-culture of this strain with Methanomassiliicoccus luminyensis B10 in the medium with 20 mmol/L betaine or choline degraded 47.03% betaine and 25.83% choline to produce methane, during which trimethylamine was detected as the intermediate. [Conclusion] The human intestinal Clostridium B8 and M. luminyensis B10 synergistically convert betaine and choline to methane. Therefore, we hypothesize that they play a role in reducing the trimethylamine in human intestine.

    参考文献
    [1] LOZUPONE CA, STOMBAUGH JI, GORDON JI, JANSSON JK, KNIGHT R. Diversity, stability and resilience of the human gut microbiota[J]. Nature, 2012, 489(7415): 220-230.
    [2] LUPTON JR. Microbial degradation products influence colon cancer risk: the butyrate controversy[J]. The Journal of Nutrition, 2004, 134(2): 479-482.
    [3] DURACK J, LYNCH SV. The gut microbiome: relationships with disease and opportunities for therapy[J]. The Journal of Experimental Medicine, 2019, 216(1): 20-40.
    [4] JIN MC, QIAN ZY, YIN JY, XU WT, ZHOU X. The role of intestinal microbiota in cardiovascular disease[J]. Journal of Cellular and Molecular Medicine, 2019, 23(4): 2343-2350.
    [5] DIN AU, HASSAN A, ZHU Y, YIN TY, GREGERSEN H, Wang GX. Amelioration of TMAO through probiotics and its potential role in atherosclerosis[J]. Applied Microbiology and Biotechnology, 2019, 103(23-24): 9217-9228.
    [6] LI XS, WANG Z, CAJKA T, BUFFA JA, NEMET I, HURD A, GU XD, SKYE SM, ROBERTS AB, WU YP, LI L, SHAHEN CJ, WAGNER MA, HARTIALA JA, KERBY RL, ROMANO KA, HAN Y, OBEID S, LÜSCHER TF, ALLAYEE H, et al. Untargeted metabolomics identifies trimethyllysine, a TMAO-producing nutrient precursor, as a predictor of incident cardiovascular disease risk[J]. JCI Insight, 2018, 3(6): e99096.
    [7] WANG SZ, YU YJ, ADELI K. Role of gut microbiota in neuroendocrine regulation of carbohydrate and lipid metabolism via the microbiota-gut-brain-liver axis[J]. Microorganisms, 2020, 8(4): 527.
    [8] HUANG JY, LIU L, CHEN CY, GAO Y. PCOS without hyperandrogenism is associated with higher plasma trimethylamine N-oxide levels[J]. BMC Endocrine Disorders, 2020, 20(1): 3.
    [9] YANG SJ, LI XY, YANG F, ZHAO R, PAN XD, LIANG JQ, TIAN L, LI XY, LIU LT, XING YW, WU M. Gut microbiota-dependent marker TMAO in promoting cardiovascular disease: inflammation mechanism, clinical prognostic, and potential as a therapeutic target[J]. Frontiers in Pharmacology, 2019, 10: 1360.
    [10] YE ZX, CHEN LL, ZENG XC, FANG Q, ZHENG BJ, LUO CY, RAO T, OUYANG DS. TMAO as a potential biomarker and therapeutic target for chronic kidney disease: a review[J]. Frontiers in Pharmacology, 2022, 13: 929262.
    [11] CAI YY, HUANG FQ, LAO XZ, LU YW, GAO XJ, ALOLGA RN, YIN KP, ZHOU XC, WANG Y, LIU BL, SHANG J, QI LW, LI J. Integrated metagenomics identifies a crucial role for trimethylamine-producing Lachnoclostridium in promoting atherosclerosis[J]. Npj Biofilms and Microbiomes, 2022, 8: 11.
    [12] RATH S, HEIDRICH B, PIEPER DH, VITAL M. Uncovering the trimethylamine-producing bacteria of the human gut microbiota[J]. Microbiome, 2017, 5(1): 54.
    [13] FENNEMA D, PHILLIPS IR, SHEPHARD EA. Trimethylamine and trimethylamine N-oxide, a flavin-containing monooxygenase 3(FMO3)-mediated host-microbiome metabolic axis implicated in health and disease[J]. Drug Metabolism and Disposition, 2016, 44(11): 1839-1850.
    [14] TICAK T, HARIRAJU D, ARCELAY MB, ARIVETT BA, FIESTER SE, FERGUSON DJ. Isolation and characterization of a tetramethylammonium-degrading Methanococcoides strain and a novel glycine betaine-utilizing Methanolobus strain[J]. Archives of Microbiology, 2015, 197(2): 197-209.
    [15] BORREL G, BRUGÈRE JF, GRIBALDO S, SCHMITZ RA, MOISSL-EICHINGER C. The host-associated archaeome[J]. Nature Reviews Microbiology, 2020, 18(11): 622-636.
    [16] MOISSL-EICHINGER C, PAUSAN M, TAFFNER J, BERG G, BANG C, SCHMITZ RA. Archaea are interactive components of complex microbiomes[J]. Trends in Microbiology, 2018, 26(1): 70-85.
    [17] DRIDI B, FARDEAU ML, OLLIVIER B, RAOULT D, DRANCOURT M. Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces[J]. International Journal of Systematic and Evolutionary Microbiology, 2012, 62(Pt 8): 1902-1907.
    [18] MIHAJLOVSKI A, ALRIC M, BRUGÈRE JF. A putative new order of methanogenic archaea inhabiting the human gut, as revealed by molecular analyses of the mcrA gene[J]. Research in Microbiology, 2008, 159(7-8): 516-521.
    [19] GACI N, BORREL G, TOTTEY W, O’TOOLE PW, BRUGÈRE JF. Archaea and the human gut: new beginning of an old story[J]. World Journal of Gastroenterology, 2014, 20(43): 16062-16078.
    [20] BECKER KW, ELLING FJ, YOSHINAGA MY, SÖLLINGER A, URICH T, HINRICHS KU. Unusual butane- and pentanetriol-based tetraether lipids in Methanomassiliicoccus luminyensis, a representative of the seventh order of methanogens[J]. Applied and Environmental Microbiology, 2016, 82(15): 4505-4516.
    [21] FADHLAOUI K, ARNAL ME, MARTINEAU M, CAMPONOVA P, OLLIVIER B, O’TOOLE PW, BRUGÈRE JF. Archaea, specific genetic traits, and development of improved bacterial live biotherapeutic products: another face of next-generation probiotics[J]. Applied Microbiology and Biotechnology, 2020, 104(11): 4705-4716.
    [22] de la CUESTA-ZULUAGA J, SPECTOR TD, YOUNGBLUT ND, LEY RE. Genomic insights into adaptations of trimethylamine-utilizing methanogens to diverse habitats, including the human gut[J]. mSystems, 2021, 6(1): e00939-e00920.
    [23] MORENO C, ROMERO J, ESPEJO RT. Polymorphism in repeated 16S rRNA genes is a common property of type strains and environmental isolates of the genus Vibrio[J]. Microbiology (Reading, England), 2002, 148(Pt 4): 1233-1239.
    [24] YU Y, LEE C, KIM J, HWANG S. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction[J]. Biotechnology and Bioengineering, 2005, 89(6): 670-679.
    [25] PARULEKAR NN, KOLEKAR P, JENKINS A, KLEIVEN S, UTKILEN H, JOHANSEN A, SAWANT S, KULKARNI-KALE U, KALE MH, SÆBØ M. Characterization of bacterial community associated with phytoplankton bloom in a eutrophic lake in south Norway using 16S rRNA gene amplicon sequence analysis[J]. PLoS One, 2017, 12(3): e0173408.
    [26] COOLEN MJL, HOPMANS EC, WIC R, MUYZER G, SCHOUTEN S, VOLKMAN JK. Evolution of the methane cycle in Ace Lake (Antarctica) during the Holocene: response of methanogens and methanotrophs to environmental change[J]. Organic Geochemistry, 2004, 35(10): 1151-1167.
    [27] URITSKIY GV, DIRUGGIERO J, TAYLOR J. MetaWRAP-a flexible pipeline for genome-resolved metagenomic data analysis[J]. Microbiome, 2018, 6(1): 158.
    [28] LI D, LIU CM, LUO R, SADAKANE K, LAM TW. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph[J]. Bioinformatics, 2015, 31(10): 1674-1676.
    [29] ALNEBERG J, BJARNASON BS, de BRUIJN I, SCHIRMER M, QUICK J, IJAZ UZ, LAHTI L, LOMAN NJ, Andersson AF. Binning metagenomic contigs by coverage and composition[J]. Nature Methods, 2014, 11(11): 1144-1146.
    [30] KANG DD, FROULA J, EGAN R, WANG Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities[J]. PeerJ, 2015, 3: e1165.
    [31] WU YW, SIMMONS BA, SINGER SW. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets[J]. Bioinformatics, 2016, 32(4): 605-607.
    [32] PARKS DH, CHUVOCHINA M, CHAUMEIL PA, RINKE C, MUSSIG AJ, HUGENHOLTZ PA. A complete domain-to-species taxonomy for bacteria and archaea[J]. Nature Biotechnology, 2020, 38(9): 1079-1086.
    [33] SEEMANN T. Prokka: rapid prokaryotic genome annotation[J]. Bioinformatics, 2014, 30(14): 2068-2069.
    [34] ARAMAKI T, BLANC-MATHIEU R, ENDO H, OHKUBO K, KANEHISA M, GOTO S, OGATA H. KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive score threshold[J]. Bioinformatics, 2020, 36(7): 2251-2252.
    [35] THAUER RK, KASTER AK, SEEDORF H, BUCKEL W, HEDDERICH R. Methanogenic archaea: ecologically relevant differences in energy conservation[J]. Nature Reviews Microbiology, 2008, 6(8): 579-591.
    [36] SPRENGER WW, HACKSTEIN JHP, KELTJENS JT. The competitive success of Methanomicrococcus blatticola, a dominant methylotrophic methanogen in the cockroach hindgut, is supported by high substrate affinities and favorable thermodynamics[J]. FEMS Microbiology Ecology, 2007, 60(2): 266-275.
    [37] HENG X, LIU WG, CHU WH. Identification of choline-degrading bacteria from healthy human feces and used for screening of trimethylamine (TMA)-lyase inhibitors[J]. Microbial Pathogenesis, 2021, 152: 104658.
    [38] KOETH RA, LAM-GALVEZ BR, KIRSOP J, WANG ZN, LEVISON BS, GU XD, COPELAND MF, BARTLETT D, CODY DB, DAI HJ, CULLEY MK, LI XS, FU XM, WU YP, LI L, DIDONATO JA, TANG WHW, GARCIA-GARCIA JC, HAZEN SL. l-carnitine in omnivorous diets induces an atherogenic gut microbial pathway in humans[J]. The Journal of Clinical Investigation, 2019, 129(1): 373-387.
    [39] RATH S, RUD T, PIEPER DH, VITAL M. Potential TMA-producing bacteria are ubiquitously found in Mammalia[J]. Frontiers in Microbiology, 2020, 10: 2966.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

田栩萍,李凌燕,李洁,高健,邓锴,东秀珠. 人肠道梭菌和甲烷马赛球菌协同代谢甜菜碱和胆碱产甲烷研究[J]. 微生物学报, 2023, 63(8): 3144-3156

复制
分享
文章指标
  • 点击次数:249
  • 下载次数: 793
  • HTML阅读次数: 893
  • 引用次数: 0
历史
  • 收稿日期:2022-11-27
  • 最后修改日期:2023-04-10
  • 在线发布日期: 2023-08-03
  • 出版日期: 2023-08-04
文章二维码