酸性旱地红壤无机氮同化菌株筛选及其全基因组分析
作者:
基金项目:

国家自然科学基金(42077033,42277287,41730753)


Isolation and whole genome analysis of bacterial strains assimilating inorganic nitrogen in acidic dryland red soils
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [56]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    微生物执行的无机氮同化作用可固定施入土壤后未被作物直接吸收的化学氮肥,有效减少化学氮肥损失、降低环境氮素污染风险。土壤无机氮同化作用不是由大量冗余微生物共同执行的,而是由一小部分功能微生物优先执行。【目的】对酸性旱地红壤中的优势无机氮同化细菌进行富集、菌株分离鉴定及全基因组测序,并明确菌株在土壤中的氮同化能力,为酸性土壤化学氮肥应用及其转化过程研究提供菌株资源和理论依据。【方法】在酸性旱地红壤中添加KNO3或(NH4)2SO4作为无机氮源,以葡萄糖作为碳源,在好氧条件下进行富集预培养,采用稀释分离法筛选出优势无机氮同化细菌菌株;将菌株回接至土壤中从而验证其无机氮同化能力,并通过全基因组测序分析菌株的氮素代谢途径及相关功能基因。【结果】酸性旱地红壤经富集预培养一周后,优势无机氮同化微生物的16S rRNA基因相对丰度从0.20%-0.94%增长至20.2%-30.2%;分离筛选后得到的3株优势无机氮同化细菌菌株,鉴定为伯克霍尔德氏菌(Burkholderia sp.) M6-3、索状芽孢杆菌(Bacillus funiculus) M2-4和节杆菌(Arthrobacter sp.) M7-15。灭菌土壤中菌株M6-3、M2-4和M7-15的无机氮同化速率分别为(1.28±0.61)、(0.17±0.07)和(0.16±0.02) mg/(kg·d)。氮素代谢通路分析显示,菌株M6-3具备更高效的氮同化代谢通路,其氮同化相关功能基因数量显著高于其他2株细菌。氮素代谢通路与功能活性结果均显示菌株Burkholderia sp. M6-3在酸性旱地红壤无机氮同化过程中占据优势。【结论】本研究证实在酸性旱地红壤无机氮同化过程中低丰度微生物类群发挥重要功能,并从菌株基因组水平上揭示了其无机氮同化代谢过程。上述结果可为酸性旱地红壤农业利用过程中化学氮肥应用及其转化过程研究提供菌株资源和理论依据。

    Abstract:

    Inorganic nitrogen assimilation performed by microorganisms can immobilize chemical fertilizer nitrogen that is not directly absorbed by crops after application to the soil, which can reduce the losses of chemical nitrogen fertilizer and the risk of environmental nitrogen pollution. Soil inorganic nitrogen assimilation is performed by functional microbial populations rather than a large number of redundant microorganisms. [Objective] The enrichment, isolation, identification, and whole genome sequencing of dominant inorganic nitrogen-assimilating bacteria in acidic dryland red soil and clarification of the nitrogen assimilation capacity of the strains in soil can provide strain resources and a theoretical basis for the application of chemical nitrogen fertilizer in acidic soil and the research on the nitrogen transformation process. [Methods] We added KNO3 or (NH4)2SO4 as the inorganic nitrogen source and glucose as the carbon source into the acidic dryland red soil. Then, we performed strain enrichment under aerobic conditions and screened the dominant bacterial strains assimilating inorganic nitrogen by the gradient dilution isolation method. We verified the inorganic nitrogen assimilation ability of the strains by soil recolonization experiments, and employed whole genome sequencing to analyze the nitrogen metabolic pathways of different strains. [Results] The relative abundance of 16S rRNA genes of dominant inorganic nitrogen-assimilating microorganisms in acidic dryland red soils increased from 0.20%-0.94% to 20.2%-30.2% after one week of enrichment. We isolated three dominant inorganic nitrogen-assimilating strains, which were identified as Burkholderia sp. M6-3, Bacillus funiculus M2-4, and Arthrobacter sp. M7-15. The inorganic nitrogen assimilation rates of strains M6-3, M2-4, and M7-15 in sterilized soil were (1.28±0.61), (0.17±0.07), and (0.16±0.02) mg/(kg·d), respectively. M6-3 possessed a more complete metabolic pathway and more functional genes related to nitrogen assimilation than the other two strains. In terms of nitrogen metabolic pathways and functional activity, Burkholderia sp. M6-3 was dominant in the assimilation of inorganic nitrogen in acidic dryland red soils. [Conclusion] This study confirmed that low-abundance microbial taxa play a dominant role in the inorganic nitrogen assimilation of acidic dryland red soil, and revealed the metabolic process of inorganic nitrogen assimilation at the genomic level of the strains. The above results provide strain resources and a theoretical basis for the study of chemical nitrogen fertilizer application and transformation process in the acidic dryland red soil.

    参考文献
    [1] CUI SH, SHI YL, GROFFMAN PM, SCHLESINGER WH, ZHU YG. Centennial-scale analysis of the creation and fate of reactive nitrogen in China (1910‒2010)[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(6): 2052-2057.
    [2] GREAVER TL, CLARK CM, COMPTON JE, VALLANO D, TALHELM AF, WEAVER CP, BAND LE, BARON JS, DAVIDSON EA, TAGUE CL, FELKER-QUINN E, LYNCH JA, HERRICK JD, LIU L, GOODALE CL, NOVAK KJ, HAEUBER RA. Key ecological responses to nitrogen are altered by climate change[J]. Nature Climate Change, 2016, 6(9): 836-843.
    [3] 程谊, 张金波, 蔡祖聪. 土壤中无机氮的微生物同化和非生物固定作用研究进展[J]. 土壤学报, 2012, 49(5): 1030-1036. CHENG Y, ZHANG JB, CAI ZC. A research progress on biotic and abiotic inorganic nitrogen immobilization in soils[J]. Acta Pedologica Sinica, 2012, 49(5): 1030-1036 (in Chinese).
    [4] 程谊, 黄蓉, 余云飞, 王慎强. 应重视硝态氮同化过程在降低土壤硝酸盐浓度中的作用[J]. 土壤学报, 2017, 54(6): 1326-1331. CHENG Y, HUANG R, YU YF, WANG SQ. Role of microbial assimilation of soil NO3 in reducing soil NO3 concentration[J]. Acta Pedologica Sinica, 2017, 54(6): 1326-1331 (in Chinese).
    [5] TAHOVSKÁ K, KAŇA J, BÁRTA J, OULEHLE F, RICHTER A, ŠANTRŮČKOVÁ H. Microbial N immobilization is of great importance in acidified mountain spruce forest soils[J]. Soil Biology and Biochemistry, 2013, 59: 58-71.
    [6] VINTEN AJ, WHITMORE A, BLOEM J, HOWARD R, WRIGHT F. Factors affecting N immobilisation/ mineralisation kinetics for cellulose-, glucose- and straw-amended sandy soils[J]. Biology and Fertility of Soils, 2002, 36(3): 190-199.
    [7] ZHANG JB, CAI ZC, ZHU TB, YANG WY, MÜLLER C. Mechanisms for the retention of inorganic N in acidic forest soils of southern China[J]. Scientific Reports, 2013, 3(1): 2342.
    [8] ROMERO CM, ENGEL R, CHEN CC, WALLANDER R. Microbial immobilization of nitrogen-15 labelled ammonium and nitrate in an agricultural soil[J]. Soil Science Society of America Journal, 2015, 79(2): 595-602.
    [9] SCHIMEL J. Ecosystem consequences of microbial diversity and community structure[M]//Ecological Studies. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995: 239-254.
    [10] MORRISSEY EM, MAU RL, SCHWARTZ E, KOCH BJ, HAYER M, HUNGATE BA. Taxonomic patterns in the nitrogen assimilation of soil prokaryotes[J]. Environmental Microbiology, 2018, 20(3): 1112-1119.
    [11] WAWRIK B, BOLING WB, van NOSTRAND JD, XIE JP, ZHOU JZ, BRONK DA. Assimilatory nitrate utilization by bacteria on the West Florida Shelf as determined by stable isotope probing and functional microarray analysis[J]. FEMS Microbiology Ecology, 2012, 79(2): 400-411.
    [12] SUN B, GU LK, BAO LJ, ZHANG SW, WEI YX, BAI ZH, ZHUANG GQ, ZHUANG XL. Application of biofertilizer containing Bacillus subtilis reduced the nitrogen loss in agricultural soil[J]. Soil Biology and Biochemistry, 2020, 148: 107911.
    [13] WANG CR, HUANG YC, YANG XR, XUE WJ, ZHANG X, ZHANG YH, PANG J, LIU YM, LIU ZQ. Burkholderia sp. Y4 inhibits cadmium accumulation in rice by increasing essential nutrient uptake and preferentially absorbing cadmium[J]. Chemosphere, 2020, 252: 126603.
    [14] TU QC, LIN L, CHENG L, DENG Y, HE ZL. NCycDB: a curated integrative database for fast and accurate metagenomic profiling of nitrogen cycling genes[J]. Bioinformatics, 2019, 35(6): 1040-1048.
    [15] TU QC, HE ZL, WU LY, XUE K, XIE G, CHAIN P, REICH PB, HOBBIE SE, ZHOU JZ. Metagenomic reconstruction of nitrogen cycling pathways in a CO2-enriched grassland ecosystem[J]. Soil Biology and Biochemistry, 2017, 106: 99-108.
    [16] RICHARDSON DJ, BERKS BC, RUSSELL DA, SPIRO S, TAYLOR CJ. Functional, biochemical and genetic diversity of prokaryotic nitrate reductases[J]. Cellular and Molecular Life Sciences CMLS, 2001, 58(2): 165-178.
    [17] MORENO-VIVIÁN C, CABELLO P, MARTÍNEZ- LUQUE M, BLASCO R, CASTILLO F. Prokaryotic nitrate reduction: molecular properties and functional distinction among bacterial nitrate reductases[J]. Journal of Bacteriology, 1999, 181(21): 6573-6584.
    [18] ZHANG JB, LAN T, MÜLLER C, CAI ZC. Dissimilatory nitrate reduction to ammonium (DNRA) plays an important role in soil nitrogen conservation in neutral and alkaline but not acidic rice soil[J]. Journal of Soils and Sediments, 2015, 15(3): 523-531.
    [19] FERRER J, PÉREZ-POMARES F, BONETE MJ. NADP-glutamate dehydrogenase from the halophilic archaeon Haloferax mediterraner. Enzyme purification, N-terminal sequence and stability[J]. FEMS Microbiology Letters, 1996, 141(1): 59-63.
    [20] IKEDA PT, SHAUGER AE, Kustu S. Salmonella typhimurium apparently perceives external nitrogen limitation as internal glutamine limitation[J]. Journal of Molecular Biology, 1996, 259(4): 589-607.
    [21] HELLING RB. Pathway choice in glutamate synthesis in Escherichia coli[J]. Journal of Bacteriology, 1998, 180(17): 4571-4575.
    [22] 赵焕帅, 王健鑫, 黄嘉茂, 马云程, 陈云飞, 陶晨智, 王定全, 廖智, 石戈, 刘雪珠, 曲武. 金黄杆菌ZHDP1菌株基因组分析及其蛋白酶活性特征与产酶优化[J]. 微生物学通报, 2022, 49(8): 3324-3334. ZHAO HS, WANG JX, HUANG JM, MA YC, CHEN YF, TAO CZ, WANG DQ, LIAO Z, SHI G, LIU XZ, QU W. Genome analysis, protease characterization, and enzyme production optimization of Chryseobacterium sp. ZHDP1[J]. Microbiology China, 2022, 49(8): 3324-3334 (in Chinese).
    [23] SHEN WS, XU TT, LIU JJ, HUANG QR, GU GY, ZHONG WH. Long-term application of organic manure changes abundance and composition of ammonia-oxidizing archaea in an acidic red soil[J]. Soil Science and Plant Nutrition, 2015, 61(4): 620-628.
    [24] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. BAO SD. Soil and Agricultural Chemistry Analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000 (in Chinese).
    [25] WALTERS W, HYDE ER, BERG-LYONS D, ACKERMANN G, HUMPHREY G, PARADA A, GILBERT JA, JANSSON JK, CAPORASO JG, FUHRMAN JA, APPRILL A, KNIGHT R. Improved bacterial 16S rRNA gene (V4 and V4–5) and fungal internal transcribed spacer marker gene primers for microbial community surveys[J]. mSystems, 2015, 1(1): e00009-e00015.
    [26] CAPORASO JG, LAUBER CL, WALTERS WA, BERG-LYONS D, HUNTLEY J, FIERER N, OWENS SM, BETLEY J, FRASER L, BAUER M, GORMLEY N, GILBERT JA, SMITH G, KNIGHT R. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms[J]. The International Society for Microbial Ecology Journal, 2012, 6(8): 1621-1624.
    [27] QUAST C, PRUESSE E, YILMAZ P, GERKEN J, SCHWEER T, YARZA P, PEPLIES J, GLÖCKNER FO. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools[J]. Nucleic Acids Research, 2013, 41(D1): D590-D596.
    [28] MISHRA M. Growing and Handling of Bacterial Cultures[M]. Rijeka: IntechOpen, 2019.
    [29] PATIL SV, MOHITE BV, PATIL CD, KOLI SH, BORASE HP, PATIL VS. Azotobacter[M]//Beneficial Microbes in Agro-Ecology. Amsterdam: Elsevier, 2020: 397-426.
    [30] 李振高, 骆永明, 滕应. 土壤与环境微生物研究法[M]. 北京: 科学出版社, 2008. LI ZG, LUO YM, TENG Y. Research Method of Soil and Environmental Microorganisms[M]. Beijing: Science Press, 2008 (in Chinese).
    [31] 伍楚妍, 黄晓冰, 刘少君, 李洋, 谢为天, 徐春厚. 海洋源芽孢杆菌的分离鉴定及其消化酶代谢产物的测定[J]. 广东农业科学, 2021, 48(7): 137-144. WU CY, HUANG XB, LIU SJ, LI Y, XIE WT, XU CH. Isolation and identification of marine Bacillus and determination of its digestive enzyme metabolites[J]. Guangdong Agricultural Sciences, 2021, 48(7): 137-144 (in Chinese).
    [32] HAAS BJ, GEVERS D, EARL AM, FELDGARDEN M, WARD DV, GIANNOUKOS G, CIULLA D, TABBAA D, HIGHLANDER SK, SODERGREN E, METHÉ B, DESANTIS TZ, CONSORTIUM HM, PETROSINO JF, KNIGHT R, BIRREN BW. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons[J]. Genome Research, 2011, 21(3): 494-504.
    [33] METZKER ML. Sequencing technologies—the next generation[J]. Nature Reviews Genetics, 2010, 11(1): 31-46.
    [34] JAYAKUMAR V, SAKAKIBARA Y. Comprehensive evaluation of non-hybrid genome assembly tools for third-generation PacBio long-read sequence data[J]. Briefings in Bioinformatics, 2019, 20(3): 866-876.
    [35] WICK RR, JUDD LM, GORRIE CL, HOLT KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads[J]. PLoS Computational Biology, 2017, 13(6): e1005595.
    [36] TATUSOV RL, KOONIN EV, LIPMAN DJ. A genomic perspective on protein families[J]. Science, 1997, 278(5338): 631-637.
    [37] KANEHISA M, GOTO S. KEGG: Kyoto encyclopedia of genes and genomes[J]. Nucleic Acids Research, 2000, 28(1): 27-30.
    [38] PAN JH, SUN Y, YAO WW, MAO HY, ZHANG YJ, ZHU MY. Complete genome sequence of the Vibrio vulnificus strain VV2014DJH, a human-pathogenic bacterium isolated from a death case in China[J]. Gut Pathogens, 2017, 9: 67.
    [39] CHRISTIE P, WASSON EA. Short-term immobilization of ammonium and nitrate added to a grassland soil[J]. Soil Biology and Biochemistry, 2001, 33(9): 1277-1278.
    [40] RECOUS S, MARY B, FAURIE G. Microbial immobilization of ammonium and nitrate in cultivated soils[J]. Soil Biology and Biochemistry, 1990, 22(7): 913-922.
    [41] MCGUIRE KL, TRESEDER KK. Microbial communities and their relevance for ecosystem models: decomposition as a case study[J]. Soil Biology and Biochemistry, 2010, 42(4): 529-535.
    [42] BALSER TC, FIRESTONE MK. Linking microbial community composition and soil processes in a California annual grassland and mixed-conifer forest[J]. Biogeochemistry, 2005, 73(2): 395-415.
    [43] SMITHWICK EAH, TURNER MG, METZGER KL, BALSER TC. Variation in NH4+ mineralization and microbial communities with stand age in lodgepole pine (Pinus contorta) forests, Yellowstone National Park (USA)[J]. Soil Biology and Biochemistry, 2005, 37(8): 1546-1559.
    [44] HEIJBOER A, ten BERGE HFM, de RUITER PC, JØRGENSEN HB, KOWALCHUK GA, BLOEM J. Plant biomass, soil microbial community structure and nitrogen cycling under different organic amendment regimes; a 15N tracer-based approach[J]. Applied Soil Ecology, 2016, 107: 251-260.
    [45] YOU YM, CHU SH, CHI YW, CHEN XF, WANG JC, HAYAT K, YANG XJ, MÜLLER C, ZHANG D, ZHOU P. How bacteria remediate soil nitrate for sustainable crop production[J]. Journal of Cleaner Production, 2021, 328: 129600.
    [46] BENGTSSON G, BENGTSON P, MÅNSSON KF. Gross nitrogen mineralization-, immobilization-, and nitrification rates as a function of soil C/N ratio and microbial activity[J]. Soil Biology and Biochemistry, 2003, 35(1): 143-154.
    [47] PURI G, ASHMAN MR. Microbial immobilization of 15N-labelled ammonium and nitrate in a temperate woodland soil[J]. Soil Biology and Biochemistry, 1999, 31(6): 929-931.
    [48] LIU YY, LI HX, LI JY, ZHOU Y, ZHOU ZM, WANG P, ZHOU SM. Characterization of the promoter of the nitrate transporter-encoding gene nrtA in Aspergillus nidulans[J]. Molecular Genetics and Genomics, 2020, 295(5): 1269-1279.
    [49] FATH MJ, KOLTER R. ABC transporters: bacterial exporters[J]. Microbiological Reviews, 1993, 57(4): 995-1017.
    [50] REES DC, JOHNSON E, LEWINSON O. ABC transporters: the power to change[J]. Nature Reviews Molecular Cell Biology, 2009, 10(3): 218-227.
    [51] ABIKO T, WAKAYAMA M, KAWAKAMI A, OBARA M, KISAKA H, MIWA T, AOKI N, OHSUGI R. Changes in nitrogen assimilation, metabolism, and growth in transgenic rice plants expressing a fungal NADP(H)-dependent glutamate dehydrogenase (gdhA)[J]. Planta, 2010, 232(2): 299-311.
    [52] WOOTTON JC. Re-assessment of ammonium-ion affinities of NADP-specific glutamate dehydrogenases. Activation of the Neurospora crassa enzyme by ammonium and rubidium ions[J]. The Biochemical Journal, 1983, 209(2): 527-531.
    [53] KINGHORN JR, PATEMAN JA. NAD and NADP l-glutamate dehydrogenase activity and ammonium regulation in Aspergillus nidulans[J]. Journal of General Microbiology, 1973, 78(1): 39-46.
    [54] DELUNA A, AVENDAÑO A, RIEGO L, GONZÁLEZ A. NADP-glutamate dehydrogenase isoenzymes of Saccharomyces cerevisiae: purification, kinetic properties, and physiological roles[J]. Journal of Biological Chemistry, 2001, 276(47): 43775-43783.
    [55] GUNKA K, STANNEK L, CARE RA, COMMICHAU FM. Selection-driven accumulation of suppressor mutants in Bacillus subtilis: the apparent high mutation frequency of the cryptic gudB gene and the rapid clonal expansion of gudB+ suppressors are due to growth under selection[J]. PLoS One, 2013, 8(6): e66120.
    [56] BELITSKY BR, SONENSHEIN AL. Role and regulation of Bacillus subtilis glutamate dehydrogenase genes[J]. Journal of Bacteriology, 1998, 180(23): 6298-6305.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘冉,姜允斌,邓欢,张银萍,韩成,钟文辉. 酸性旱地红壤无机氮同化菌株筛选及其全基因组分析[J]. 微生物学报, 2023, 63(8): 3157-3172

复制
分享
文章指标
  • 点击次数:288
  • 下载次数: 837
  • HTML阅读次数: 974
  • 引用次数: 0
历史
  • 收稿日期:2022-12-02
  • 最后修改日期:2023-02-17
  • 在线发布日期: 2023-08-03
  • 出版日期: 2023-08-04
文章二维码