基于比较转录组学分析NaCl胁迫影响德尔卑沙门氏菌的耐渗机制
作者:
基金项目:

安徽省自然科学基金(2008085MC89)


NaCl stress affects the permeability of Salmonella enterica subsp. enterica Derby: a study based on comparative transcriptomics
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [44]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】研究高渗胁迫条件下德尔卑沙门氏菌(Salmonella enterica subsp. enterica Derby, S. Derby)的转录组调控机制,分析差异表达基因(differentially expressed genes, DEGs)表达水平,探究在高渗胁迫影响下德尔卑沙门氏菌耐渗反应的相关代谢通路。【方法】通过高渗胁迫诱导德尔卑沙门氏菌的耐渗性,提取菌株的总RNA,去除rRNA,构建cDNA文库。利用转录组测序技术及生物学信息技术分析相关DEGs,并通过实时荧光定量PCR (real-time fluorescence quantitative PCR, qRT-PCR)进行验证。【结果】胁迫组德尔卑沙门氏菌通过转录组测序结果发现有3 950个DEGs,其中具有显著上调的基因21个,显著下调基因38个。涉及到细胞膜蛋白、氨基酸的代谢等相关基因上调,协助德尔卑沙门氏菌在高渗环境中存活。与此同时,胁迫组德尔卑沙门氏菌的糖转运系统(sugar transport system, PTS)、糖酵解过程以及抗氧化性相关基因表达显著下调,这是由于高渗环境菌体需要在体内储存大量糖类等物质,从而降低了糖原的消耗,进而导致细胞外膜的脂多糖合成受到抑制,降低了高渗胁迫下德尔卑沙门氏菌细胞膜表面的O抗原的合成。【结论】高渗环境诱导后显著提高了德尔卑沙门氏菌的耐渗性,其中Na+/H+逆向转运蛋以及谷氨酸的代谢通路发挥着重要的作用,为进一步了解以及更好地控制其在食品中的污染提供了理论依据。

    Abstract:

    [Objective] This study aims to decipher the mechanism of Salmonella enterica subsp. enterica Derby (S. Derby) adapting to hypertonic stress at the transcriptional level. We mined the differentially expressed genes (DEGs) to explore the metabolic pathways associated with the response of S. Derby to the stress. [Methods] After the hyperosmotic tolerance of S. Derby was induced, we extracted the total RNA, removed the rRNA, and constructed a cDNA library. The relevant DEGs were identified by transcriptome sequencing and bioinformatics tools and verified by real-time fluorescence quantitative PCR. [Results] After hyperosmotic stimulation, 3 950 DEGs were identified by transcriptome sequencing, which included 21 significantly up-regulated genes and 38 significantly down-regulated genes. The genes involved in the efflux of Na+ from the cell membrane and the metabolism of amino acids were up-regulated, which can provide energy and help S. Derby survive in a hyperosmotic environment. The genes associated with the sugar transport system (PTS), glycolysis, and anti-oxidation of S. Derby were significantly down-regulated in the stress group. Under hyperosmotic stress, the bacteria cannot take up carbohydrates from the external environment and thus the synthesis of lipopolysaccharide in the outer membrane of the cell is inhibited, which reduces the invasiveness of S. Derby, thereby increasing the toxicity of S. Derby. [Conclusion] Under saturated NaCl stress, the osmotic tolerance of S. Derby is significantly improved, during which the Na+/H+ antiporter and the glutamate metabolic pathway play a key role. The findings provide a theoretical basis for the further understanding and control of S. Derby contamination in food.

    参考文献
    [1] 童哲, 程苏云, 梅玲玲. 浙江省272份食品沙门氏菌检测结果[J]. 浙江预防医学, 2003, 15(4): 33-34. TONG Z, CHENG SY, MEI LL. Detection results of Salmonella in 272 food samples in Zhejiang Province[J]. Zhejiang Journal of Preventive Medicine, 2003, 15(4): 33-34 (in Chinese).
    [2] EFSA Panel on Biological Hazards. Scientific opinion on a quantitative microbiological risk assessment of Salmonella in slaughter and breeder pigs[J]. EFSA Journal, 2010, 8(4): 1547.
    [3] 耿士忠, 潘志明, 刘杰, 刘志成, 方强, 焦新安. 猪及猪肉中沙门氏菌快速检测的研究进展[J]. 猪业科学, 2010, 27(6): 100-105. GENG SZ, PAN ZM, LIU J, LIU ZC, FANG Q, JIAO XA. Research progress on rapid detection of Salmonella in pigs and pork[J]. Swine Industry Science, 2010, 27(6): 100-105 (in Chinese).
    [4] STEENACKERS H, HERMANS K, VANDERLEYDEN J, de KEERSMAECKER SCJ. Salmonella biofilms: an overview on occurrence, structure, regulation and eradication[J]. Food Research International, 2012, 45(2): 502-531.
    [5] 翟立公, 李港回, 周紫洁, 黄菊, 蔡秋慧, 王俊颖, 杨剑婷. 高渗适应德尔卑沙门氏菌对交叉环境胁迫抗性分析[J]. 食品与发酵工业, 2022, 48(15): 69-77. ZHAI LG, LI GH, ZHOU ZJ, HUANG J, CAI QH, WANG JY, YANG JT. Tolerance of hypertonic adapted Salmonella enterica subsp. enterica Derby to overlapping various environmental stresses[J]. Food and Fermentation Industries, 2022, 48(15): 69-77 (in Chinese).
    [6] SHI XM, ZHU XN. Biofilm formation and food safety in food industries[J]. Trends in Food Science & Technology, 2009, 20(9): 407-413.
    [7] RENNELLA E, SÁRA T, JUEN M, WUNDERLICH C, IMBERT L, SOLYOM Z, FAVIER A, AYALA I, WEINHÄUPL K, SCHANDA P, KONRAT R, KREUTZ C, BRUTSCHER B. RNA binding and chaperone activity of the E. coli cold-shock protein CspA[J]. Nucleic Acids Research, 2017, 45(7): 4255-4268.
    [8] 包文智, 李兴, 张海波, 峥嵘, 刘丽娟. rpoS基因在肠杆菌CGMCC 5087响应环境胁迫中的功能[J]. 微生物学通报, 2021, 48(1): 104-112. BAO WZ, LI X, ZHANG HB, ZHENG R, LIU LJ. Functions of rpoS gene in response to environmental stress by Enterobacter sp. CGMCC 5087[J]. Microbiology China, 2021, 48(1): 104-112 (in Chinese).
    [9] KEMPF B, BREMER E. Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments[J]. Archives of Microbiology, 1998, 170(5): 319-330.
    [10] PADAN E, VENTURI M, GERCHMAN Y, DOVER N. Na+/H+ antiporters[J]. Biochimica et Biophysica Acta, 2001, 1505(1): 144-157.
    [11] LIANOU A, NYCHAS GJE, KOUTSOUMANIS KP. Variability in the adaptive acid tolerance response phenotype of Salmonella enterica strains[J]. Food Microbiology, 2017, 62: 99-105.
    [12] XU JG, HU HX, HAN BZ, CHEN JY. Interactions between Salmonella enteritidis and food processing facility isolate Bacillus paramycoides B5 in dual-species biofilms[J]. LWT, 2022, 156: 113053.
    [13] CRUCELLO A, FURTADO MM, CHAVES MDR, SANT’ANA AS. Transcriptome sequencing reveals genes and adaptation pathways in Salmonella typhimurium inoculated in four low water activity foods[J]. Food Microbiology, 2019, 82: 426-435.
    [14] ALVAREZ-ORDÓÑEZ A, FERNÁNDEZ A, BERNARDO A, LÓPEZ M. Arginine and lysine decarboxylases and the acid tolerance response of Salmonella typhimurium[J]. International Journal of Food Microbiology, 2010, 136(3): 278-282.
    [15] YANG ML, JIANG R, LIU M, CHEN SJ, HE L, AO XL, ZOU LK, LIU SL, ZHOU K. Study of the probiotic properties of lactic acid bacteria isolated from Chinese traditional fermented pickles[J]. Journal of Food Processing and Preservation, 2017, 41(3): e12954.
    [16] PADAN E, TZUBERY T, HERZ K, KOZACHKOV L, RIMON A, GALILI L. NhaA of Escherichia coli, as a model of a pH-regulated Na+/H+ antiporter[J]. Biochimica et Biophysica Acta, 2004, 1658(1/2): 2-13.
    [17] WEST IC, MITCHELL P. Proton/sodium ion antiport in Escherichia coli[J]. The Biochemical Journal, 1974, 144(1): 87-90.
    [18] BAI H, ZHOU D, ZHANG X. The responses of Salmonella enterica serovar typhimurium to vanillin in apple juice through global transcriptomics[J]. International Journal of Food Microbiology, 2021, 347: 109189.
    [19] PADAN E. Functional and structural dynamics of NhaA, a prototype for Na+ and H+ antiporters, which are responsible for Na+ and H+ homeostasis in cells[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2014, 1837(7): 1047-1062.
    [20] PADAN E, SCHULDINER S. Molecular physiology of the Na+/H+ antiporter in Escherichia coli[J]. The Journal of Experimental Biology, 1994, 196: 443-456.
    [21] RAHAV MO, CARMEL O, KARPEL R, TAGLICHT D, GLASER G, SCHULDINER S, PADAN E. NhaR, a protein homologous to a family of bacterial regulatory proteins (LysR), regulates nhaA, the sodium proton antiporter gene in Escherichia coli[J]. Journal of Biological Chemistry, 1992, 267(15): 10433-10438.
    [22] LENTES CJ, MIR SH, BOEHM M, GANEA C, FENDLER K, HUNTE C. Molecular characterization of the Na+/H+-antiporter NhaA from Salmonella typhimurium[J]. PLoS One, 2014, 9(7): e101575.
    [23] CĂLINESCU O, DANNER E, BÖHM M, HUNTE C, FENDLER K. Species differences in bacterial NhaA Na+/H+ exchangers[J]. FEBS Letters, 2014, 588(17): 3111-3116.
    [24] YANG F, LIU N, CHEN YZ, WANG S, LIU J, ZHAO L, MA X, CAI DB, CHEN SW. Rational engineering of cofactor specificity of glutamate dehydrogenase for poly-γ-glutamic acid synthesis in Bacillus licheniformis[J]. Enzyme and Microbial Technology, 2022, 155: 109979.
    [25] ZHANG Q. Enhanced production of poly-γ-glutamic acid via optimizing the expression cassette of Vitreoscilla hemoglobin in Bacillus licheniformis[J]. Synthetic and Systems Biotechnology, 2022, 7(1): 567-573.
    [26] ZHANG Y, ZHANG XH, XIAO SY, QI W, XU JL, YUAN ZH, WANG ZM. Engineering Corynebacterium glutamicum mutants for 3-methyl-1-butanol production[J]. Biochemical Genetics, 2019, 57(3): 443-454.
    [27] UTAMI MF, MATSUDA Y, TAKADA A, IWAI N, HIRASAWA T, WACHI M. Growth promotion in Corynebacterium glutamicum by overexpression of the NCgl2986 gene encoding a protein homologous to peptidoglycan amidases[J]. The Journal of General and Applied Microbiology, 2020, 66(1): 1-7.
    [28] HONG J, PARK W, SEO H, KIM LL-KWON. Crystal structure of an acetyl-CoA acetyltransferase from PHB producing bacterium Bacillus cereus ATCC 14579[J]. Biochemical and Biophysical Research Communications, 2020, 533(3): 442-448.
    [29] LIU JM, ZHAI LG, LU WJ, LU ZX, BIE XM. Amino acid decarboxylase-dependent acid tolerance, selected phenotypic, and virulence gene expression responses of Salmonella enterica serovar Heidelberg[J]. Food Research International, 2017, 92: 33-39.
    [30] ZHI Y, LIN SM, JANG AY, AHN KB, JI HJ, GUO HC, LIM S, SEO HS. Effective mucosal live attenuated Salmonella vaccine by deleting phosphotransferase system component genes ptsI and crr[J]. Journal of Microbiology (Seoul, Korea), 2019, 57(1): 64-73.
    [31] HERAVI KM, ALTENBUCHNER J. Cross talk among transporters of the phosphoenolpyruvate-dependent phosphotransferase system in Bacillus subtilis[J]. Journal of Bacteriology, 2018, 200(19): e00213-e00218.
    [32] CRIGLER J, BANNERMAN-AKWEI L, COLE AE, EITEMAN MA, ALTMAN E. Glucose can be transported and utilized in Escherichia coli by an altered or overproduced N-acetylglucosamine phosphotransferase system (PTS)[J]. Microbiology (Reading, England), 2018, 164(2): 163-172.
    [33] STRICKLAND M, KALE S, STRUB MP, SCHWIETERS CD, LIU J, PETERKOFSKY A, TJANDRA N. Potential regulatory role of competitive encounter complexes in paralogous phosphotransferase systems[J]. Journal of Molecular Biology, 2019, 431(12): 2331-2342.
    [34] BIER NM, HAMMERSTROM TG, KOEHLER TM. Influence of the phosphoenolpyruvate: carbohydrate phosphotransferase system on toxin gene expression and virulence in Bacillus anthracis[J]. Molecular Microbiology, 2020, 113(1): 237-252.
    [35] 杨克慧, 董鹏程, 刘昀阁, 张一敏, 毛衍伟, 梁荣蓉, 罗欣, 朱立贤. 基于转录组学分析酸胁迫影响鼠伤寒沙门氏菌耐酸能力的机理[J]. 食品科学, 2022, 43(22): 166-174 YANG KH, DONG PC, LIU YG, ZHANG YM, MAO YW, LIANG RR, LUO X, ZHU LX. Global transcriptomic analysis of acid-adapted Salmonella typhimurium by RNA-sequence[J]. Food Science, 2022, 43(22): 166-174 (in Chinese)
    [36] DEUTSCHER J, AKÉ FMD, DERKAOUI M, ZÉBRÉ AC, CAO TN, BOURAOUI H, KENTACHE T, MOKHTARI A, MILOHANIC E, JOYET P. The bacterial phosphoenolpyruvate: carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions[J]. Microbiology and Molecular Biology Reviews: MMBR, 2014, 78(2): 231-256.
    [37] HUANG X, LAO WJ, ZHOU YC, SUN YW, WANG QJ. Glutamate dehydrogenase enables Salmonella to survive under oxidative stress and escape from clearance in macrophages[J]. FEBS Letters, 2022, 596(1): 81-94.
    [38] MORALES EH, COLLAO B, DESAI PT, CALDERÓN IL, GIL F, LURASCHI R, PORWOLLIK S, McCLELLAND M, SAAVEDRA CP. Probing the ArcA regulon under aerobic/ROS conditions in Salmonella enterica serovar typhimurium[J]. BMC Genomics, 2013, 14: 626.
    [39] SMIRNOVA G, MUZYKA N, LEPEKHINA E, OKTYABRSKY O. Roles of the glutathione- and thioredoxin-dependent systems in the Escherichia coli responses to ciprofloxacin and ampicillin[J]. Archives of Microbiology, 2016, 198(9): 913-921.
    [40] LAYADA S, BENOUARETH DE, COUCKE W, ANDJELKOVIC M. Assessment of antibiotic residues in commercial and farm milk collected in the region of Guelma (Algeria)[J]. International Journal of Food Contamination, 2016, 3(1): 19.
    [41] TREBICHAVSKÝ I, ŠPLÍCHAL I, ŠPLÍCHALOVÁ A. Innate immune response in the gut against Salmonella— review[J]. Folia Microbiologica, 2010, 55(3): 295-300.
    [42] WHITFIELD C, STEPHEN TRENT M. Biosynthesis and export of bacterial lipopolysaccharides[J]. Annual Review of Biochemistry, 2014, 83: 99-128.
    [43] SUN L, VELLA P, SCHNELL R, POLYAKOVA A, BOURENKOV G, LI FY, CIMDINS A, SCHNEIDER TR, LINDQVIST Y, GALPERIN MY, SCHNEIDER G, RÖMLING U. Structural and functional characterization of the BcsG subunit of the cellulose synthase in Salmonella typhimurium[J]. Journal of Molecular Biology, 2018, 430(18): 3170-3189.
    [44] BAI H, ZHOU DG, HU SF, ZHANG XW, LIU QJ, XIAO XL, YU YG, LI XF. Enhanced virulence of Salmonella enterica serovar enteritidis ATCC 13076 under acid stress by global transcriptomics[J]. Research Square, 2021. DOI: 10.21203/rs.3.rs-216400/v1.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

翟立公,李港回,黄菊,蔡秋慧,魏照辉,何晓东,曹睿,王俊颖. 基于比较转录组学分析NaCl胁迫影响德尔卑沙门氏菌的耐渗机制[J]. 微生物学报, 2023, 63(8): 3219-3234

复制
分享
文章指标
  • 点击次数:284
  • 下载次数: 951
  • HTML阅读次数: 828
  • 引用次数: 0
历史
  • 收稿日期:2022-12-05
  • 最后修改日期:2023-02-27
  • 在线发布日期: 2023-08-03
  • 出版日期: 2023-08-04
文章二维码