青藏高原极端生境细菌多样性差异及影响因素
作者:
基金项目:

国家自然科学基金(81760633);生态学世界一流学科科技创新项目(2021-stxy-Y2);生物技术一流专业科技创新项目(2022-stxy-B8,2022-stxy-B9,2022-stxy-B22)


Differences and influencing factors of bacterial composition and diversity in seven typical extreme habitats on the Qinghai-Tibetan Plateau
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [52]
  • | | | |
  • 文章评论
    摘要:

    土壤微生物组对于生态系统的可持续性至关重要,青藏高原独特的地理环境孕育了多样的极端环境,其土壤细菌组成差异及其驱动因素尚不清楚。【目的】探究不同极端生境土壤细菌多样性及其影响因素。【方法】对7种典型的青藏高原极端生境土壤DNA进行16S rRNA基因高通量测序,通过生物信息分析,找出不同生境细菌群落组成、功能差异;结合土壤理化因子,进一步分析细菌组成差异的潜在影响因素。【结果】通过高通量测序,从7个不同生境的36个土壤样品中共获得16 323 712高质量reads,26 504个可操作分类单元(operational taxonomic units, OTUs)。在门分类水平上,各生境中注释到的放线菌门(Actinomycetota)与假单胞菌门(Pseudomonadota)相对丰度均最高;在属分类水平上,芽孢杆菌属(Bacillus)、Ambiguous_taxa、土壤红杆菌属(Solirubrobacter)、假节杆菌属(Pseudarthrobacter)等为优势属。另外,不同生境中的细菌α多样性无显著差异,但是β多样性差异显著,并且通过LEfSe分析进一步说明了不同生境细菌群落结构的差异性。通过冗余分析(redundancy analysis, RDA)发现,Mg2+、Na+和K+等常量元素是影响细菌群落结构的主要因子,而且其他土壤理化因子对不同生境中优势菌群的分布具有一定的特异性。最后,利用FAPROTAX工具对细菌群落功能预测,发现不同生境的细菌类群参与的氮、硫元素生物地球化学循环过程差异较大。【结论】青藏高原不同极端生境细菌群落结构差异较大,这一成因受到不同土壤理化因子的驱动,并且各生境下大量未注释菌属表明青藏高原具有极为丰富的潜在细菌新物种资源。

    Abstract:

    Soil microorganisms play a key role in the sustainability of ecosystems. There are diverse extreme habitats on the Qinghai-Tibetan Plateau (QTP), where the differences of soil bacterial composition and the driving factors remain to be studied. [Objective] To explore the differences and influencing factors of soil bacterial diversity in different extreme habitats on the QTP. [Methods] High-throughput sequencing of 16S rRNA genes was performed for the soil samples from seven typical extreme habitats on the QTP. The bioinformatics tools were employed to analyze the differences in bacterial composition and functions among different habitats. The potential soil factors influencing bacterial composition were further analyzed. [Results] A total of 16 323 712 high-quality reads and 26 504 operational taxonomic units (OTUs) were obtained for the 36 soil samples collected from seven different habitats. At the phylum level, the relative abundance of Actinomycetota and Proteobacteria were the highest in all the habitats. Bacillus, Ambiguous_taxa, Solirubacter, and Pseudoarthrobacter were the dominant genera. In addition, there was no significant difference in bacterial alpha diversity among different habitats, while the bacterial beta diversity showed significant differences, which was further confirmed by Linear discriminant analysis Effect Size (LEfSe). Redundancy analysis (RDA) identified Mg2+, Na+, and K+ as the main factors affecting the bacterial community structure, and the effects of other soil physicochemical factors on the distribution of dominant flora varied in different habitats. Finally, FAPROTAX tool was used to predict the bacterial function, which suggested that the roles of bacteria in the biogeochemical cycling processes of nitrogen and sulfur varied in different habitats. [Conclusion] The bacterial community structure varies greatly in different extreme habitats of the QTP, which is driven by different soil physicochemical factors. The presence of rich unannotated genera in each habitat indicates that the QTP has rich potential new bacterial resources.

    参考文献
    [1] MYERS N, MITTERMEIER RA, MITTERMEIER CG, Da FONSECA GAB, KENT J. Biodiversity hotspots for conservation priorities[J]. Nature, 2000, 403(6772): 853-858.
    [2] ZHANG G, HUANG YY, YANG J, LAI XH, JIN D, LU S, CHENG YP, YANG CX, PU J, LIANG JR, HUANG Y, XU JG. Gordonia jinghuaiqii sp. nov. and Gordonia zhaorongruii sp. nov., isolated from Tibetan Plateau wildlife[J]. International Journal of Systematic and Evolutionary Microbiology, 2021, 71(7): 004897.
    [3] YANG LL, PANG Y, LIU HC, XIN YH, LIU Q. Mucilaginibacter glaciei sp. nov. and Mucilaginibacter pankratovii sp. nov., isolated from a glacier on the Tibetan Plateau[J]. International Journal of Systematic and Evolutionary Microbiology, 2021, 71(1): 004585.
    [4] LU HB, GAO PX, PHURBU D, WU QL, XING P. Salegentibacter lacus sp. nov. and Salegentibacter tibetensis sp. nov., isolated from hypersaline lakes on the Tibetan Plateau[J]. International Journal of Systematic and Evolutionary Microbiology, 2022, 72(1): 005202.
    [5] ZHANG BL, TANG SK, YANG RQ, CHEN XM, ZHANG DM, ZHANG W, LI SW, CHEN T, LIU GX, DYSON P. Streptomyces dangxiongensis sp. nov., isolated from soil of Qinghai-Tibet Plateau[J]. International Journal of Systematic and Evolutionary Microbiology, 2019, 69(9): 2729-2734.
    [6] ZHANG BL, TANG SK, CHEN XM, ZHANG L, ZHANG GS, ZHANG W, LIU GX, CHEN T, LI SW, DYSON P. Streptomyces lacrimifluminis sp. nov., a novel actinobacterium that produces antibacterial compounds, isolated from soil[J]. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(12): 4981-4986.
    [7] LI JY, WANG LW, YE ZM, LU LC, LI YM. Streptomyces tibetensis sp. nov., an actinomycete isolated from the Tibetan Plateau[J]. Antonie Van Leeuwenhoek, 2020, 113(1): 33-41.
    [8] YIN YL, WANG YQ, LI SX, LIU Y, ZHAO W, MA YS, BAO GS. Soil microbial character response to plant community variation after grazing prohibition for 10 years in a Qinghai-Tibetan alpine meadow[J]. Plant and Soil, 2021, 458(1/2): 175-189.
    [9] WANG YP, LI QB, HUI W, SHI JY, LIN Q, CHEN XC, CHEN YX. Effect of sulphur on soil Cu/Zn availability and microbial community composition[J]. Journal of Hazardous Materials, 2008, 159(2/3): 385-389.
    [10] SATTIN SR, CLEVELAND CC, HOOD E, REED SC, KING AJ, SCHMIDT SK, ROBESON MS, ASCARRUNZ N, NEMERGUT DR. Functional shifts in unvegetated, perhumid, recently-deglaciated soils do not correlate with shifts in soil bacterial community composition[J]. The Journal of Microbiology, 2009, 47(6): 673-681.
    [11] REN BH, HU YM, BU RC. Vertical distribution patterns and drivers of soil bacterial communities across the continuous permafrost region of northeastern China[J]. Ecological Processes, 2022, 11(1): 1-13.
    [12] YI XY, NING C, FENG SL, GAO HQ, ZHAO JL, LIAO JY, PENG YH, ZHAO SQ, LIU SG. Urbanization-induced environmental changes strongly affect wetland soil bacterial community composition and diversity[J]. Environmental Research Letters, 2022, 17(1): 014027.
    [13] KOYAMA A, WALLENSTEIN MD, SIMPSON RT, MOORE JC. Soil bacterial community composition altered by increased nutrient availability in Arctic tundra soils[J]. Frontiers in Microbiology, 2014, 5: 516.
    [14] ZENG J, LIU XJ, SONG L, LIN XG, ZHANG HY, SHEN CC, CHU HY. Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition[J]. Soil Biology and Biochemistry, 2016, 92: 41-49.
    [15] 谢学辉, 范凤霞, 袁学武, 朱文祥, 刘娜, 平婧, 柳建设. 德兴铜矿尾矿重金属污染对土壤中微生物多样性的影响[J]. 微生物学通报, 2012, 39(5): 624-637. XIE XH, FAN FX, YUAN XW, ZHU WX, LIU N, PING J, LIU JS. Impact on microbial diversity of heavy metal pollution in soils near Dexing copper mine tailings[J]. Microbiology China, 2012, 39(5): 624-637 (in Chinese).
    [16] LORENZ N, HINTEMANN T, KRAMAREWA T, KATAYAMA A, YASUTA T, MARSCHNER P, KANDELER E. Response of microbial activity and microbial community composition in soils to long-term arsenic and cadmium exposure[J]. Soil Biology and Biochemistry, 2006, 38(6): 1430-1437.
    [17] YANG WH, ZHANG XT, WU LQ, RENSING C, XING SH. Short-term application of magnesium fertilizer affected soil microbial biomass, activity, and community structure[J]. Journal of Soil Science and Plant Nutrition, 2021, 21(1): 675-689.
    [18] ALLISON VJ, YERMAKOV Z, MILLER RM, JASTROW JD, MATAMALA R. Using landscape and depth gradients to decouple the impact of correlated environmental variables on soil microbial community composition[J]. Soil Biology and Biochemistry, 2007, 39(2): 505-516.
    [19] 王小英, 刘国红, 刘波, 阮传清, 陈峥. 青海可可西里嗜碱芽胞杆菌资源调查[J]. 微生物学通报, 2017, 44(8): 1847-1857. WANG XY, LIU GH, LIU B, RUAN CQ, CHEN Z. Survey of alkaliphilic Bacillus-like resources in kekexili, Qinghai[J]. Microbiology China, 2017, 44(8): 1847-1857 (in Chinese).
    [20] WANG XJ, ZHANG ZC, YU ZQ, SHEN GF, CHENG HF, TAO S. Composition and diversity of soil microbial communities in the alpine wetland and alpine forest ecosystems on the Tibetan Plateau[J]. Science of the Total Environment, 2020, 747: 141358.
    [21] LIU L, LIU HY, ZHANG WS, CHEN Y, SHEN JX, LI YL, PAN YX, LIN W. Microbial diversity and adaptive strategies in the Mars-like Qaidam Basin, North Tibetan Plateau, China[J]. Environmental Microbiology Reports, 2022, 14(6): 873-885.
    [22] 阴红彬, 谢立红, 黄庆阳, 徐明怡, 罗春雨, 沙刚, 曹宏杰. 五大连池火山群土壤微生物群落代谢多样性及影响因素研究[J]. 土壤与作物, 2022, 11(4): 458-469. YIN HB, XIE LH, HUANG QY, XU MY, LUO CY, SHA G, CAO HJ. Soil microbial metabolic diversity and its influencing factors in Wudalianchi volcanoic groups[J]. Soil and Crop, 2022, 11(4): 458-469 (in Chinese).
    [23] 陆嘉玮, 徐晨烨, 胡纯, 刘树仁, 李方. 微塑料及金属在黄浦江地表水环境的赋存特征及与金属抗性基因的相关性分析[J]. 环境科学, 2023, 44(5): 2551-2561. LU JW, XU CY, HU C, LIU SR, LI F. Occurrence characteristics of microplastics and metal elements in the surface water of Huangpu River and their associations with metal resistance genes[J]. Environmental Science, 2023, 44(5): 2551-2561 (in Chinese).
    [24] EDGAR RC. Search and clustering orders of magnitude faster than BLAST[J]. Bioinformatics, 2010, 26(19): 2460-2461.
    [25] BOKULICH NA, SUBRAMANIAN S, FAITH JJ, GEVERS D, GORDON JI, KNIGHT R, MILLS DA, CAPORASO JG. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing[J]. Nature Methods, 2013, 10(1): 57-59.
    [26] BYRNES JEK, GAMFELDT L, ISBELL F, LEFCHECK JS, GRIFFIN JN, HECTOR A, CARDINALE BJ, HOOPER DU, DEE LE, EMMETT DUFFY J. Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions[J]. Methods in Ecology and Evolution, 2014, 5(2): 111-124.
    [27] BAHADUR A, ZHANG ZQ, SAJJAD W, NASIR F, ZIA MA, LIU GX, CHEN T, ZHANG W. Bacterial community structure and functions in microhabitats associated with black stones in Black Gobi Desert, China[J]. Ecological Indicators, 2022, 142: 109168.
    [28] WU MH, LI T, ZHANG GS, WU FS, CHEN T, ZHANG BL, WU XK, LIU GX, ZHANG KC, ZHANG W. Seasonal variation of hypolithic microbiomes in the Gobi Desert[J]. Microbial Ecology, 2023, 85: 1382-1395.
    [29] ZHOU H, ZHANG DG, JIANG ZH, SUN P, XIAO HL, WU YX, CHEN JG. Changes in the soil microbial communities of alpine steppe at Qinghai-Tibetan Plateau under different degradation levels[J]. Science of the Total Environment, 2019, 651: 2281-2291.
    [30] ZHANG Y, DONG SK, GAO QZ, LIU SL, ZHOU HK, GANJURJAV H, WANG XX. Climate change and human activities altered the diversity and composition of soil microbial community in alpine grasslands of the Qinghai-Tibetan Plateau[J]. Science of the Total Environment, 2016, 562: 353-363.
    [31] YANG YY, LIU GH, YE C, LIU WZ. Bacterial community and climate change implication affected the diversity and abundance of antibiotic resistance genes in wetlands on the Qinghai-Tibetan Plateau[J]. Journal of Hazardous Materials, 2019, 361: 283-293.
    [32] DENG YC, CUI XY, HERNÁNDEZ M, DUMONT MG. Microbial diversity in hummock and hollow soils of three wetlands on the Qinghai-Tibetan Plateau revealed by 16S rRNA pyrosequencing[J]. PLoS One, 2014, 9(7): e103115.
    [33] MUKHOPADHYA I, HANSEN R, EL-OMAR EM, HOLD GL. IBD—what role do Proteobacteria play?[J]. Nature Reviews Gastroenterology & Hepatology, 2012, 9(4): 219-230.
    [34] ZHANG W, BAHADUR A, SAJJAD W, ZHANG GS, NASIR F, ZHANG BL, WU XK, LIU GX, CHEN T. Bacterial diversity and community composition distribution in cold-desert habitats of Qinghai-Tibet Plateau, China[J]. Microorganisms, 2021, 9(2): 262.
    [35] BAHADUR A, ZHANG W, SAJJAD W, NASIR F, ZHANG GS, LIU GX, CHEN T. Bacterial diversity patterns of desert dunes in the northeastern Qinghai-Tibet Plateau, China[J]. Archives of Microbiology, 2021, 203(6): 2809-2823.
    [36] ZHANG W, BAHADUR A, ZHANG GS, ZHANG BL, WU XK, CHEN T, LIU GX. Diverse bacterial communities from Qaidam Basin of the Qinghai-Tibet Plateau: insights into variations in bacterial diversity across different regions[J]. Frontiers in Microbiology, 2020, 11: 554105.
    [37] YANG J, MA LA, JIANG HC, WU G, DONG HL. Salinity shapes microbial diversity and community structure in surface sediments of the Qinghai-Tibetan Lakes[J]. Scientific Reports, 2016, 6: 25078.
    [38] WANG YQ, BAO GY. Diversity of prokaryotic microorganisms in alkaline saline soil of the Qarhan Salt Lake area in the Qinghai-Tibet Plateau[J]. Scientific Reports, 2022, 12: 3365.
    [39] LIU XB, YAO TD, KANG SC, JIAO NZ, ZENG YH, LIU YQ. Bacterial community of the largest oligosaline lake, namco on the Tibetan Plateau[J]. Geomicrobiology Journal, 2010, 27(8): 669-682.
    [40] KIM HM, JUNG JY, YERGEAU E, HWANG CY, HINZMAN L, NAM S, HONG SG, KIM OS, CHUN J, LEE YK. Bacterial community structure and soil properties of a subarctic tundra soil in Council, Alaska[J]. FEMS Microbiology Ecology, 2014, 89(2): 465-475.
    [41] STARK S, ESKELINEN A, MÄNNISTÖ MK. Regulation of microbial community composition and activity by soil nutrient availability, soil pH, and herbivory in the tundra[J]. Ecosystems, 2012, 15(1): 18-33.
    [42] LAUBER CL, HAMADY M, KNIGHT R, FIERER N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale[J]. Applied and Environmental Microbiology, 2009, 75(15): 5111-5120.
    [43] ROUSK J, BÅÅTH E, BROOKES PC, LAUBER CL, LOZUPONE C, CAPORASO JG, KNIGHT R, FIERER N. Soil bacterial and fungal communities across a pH gradient in an arable soil[J]. The ISME Journal, 2010, 4(10): 1340-1351.
    [44] 李二阳, 马雪莉, 吕杰, 马媛, 吕光辉. 新疆天山北坡不同盐湖微生物菌群结构及其影响因子[J]. 生态学报, 2021, 41(18): 7212-7225 LI EY, MA XL, LYU J, MA Y, LYU GH. Microbial community structure and its influencing factors of different salt lakes on the northern slope of Tianshan Mountains, Xinjiang[J]. Acta Ecologica Sinica, 2021, 41(18): 7212-7225 (in Chinese).
    [45] GOLDSTEIN AH. Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by gram negative bacteria[J]. Biological Agriculture & Horticulture, 1995, 12(2): 185-193.
    [46] PASTORE G, WEIG AR, VAZQUEZ E, SPOHN M. Weathering of calcareous bedrocks is strongly affected by the activity of soil microorganisms[J]. Geoderma, 2022, 405: 115408.
    [47] 汪文强, 赵长明, 张新芳, 陈玉莹, 刘勇勤. 三极冰川冰尘微生物及其介导的碳氮生物地球化学循环研究进展[J]. 微生物学报, 2022, 62(6): 2136-2149. WANG WQ, ZHAO CM, ZHANG XF, CHEN YY, LIU YQ. Research progress of cryoconite microorganisms and biogeochemical cycling of carbon and nitrogen driven by cryoconite in tripolar glaciers[J]. Acta Microbiologica Sinica, 2022, 62(6): 2136-2149 (in Chinese).
    [48] WANG SK, HENG Y, SU QX, ZUO J. Exploring the role of heterotrophs in partial nitritation-anammox process treating thermal hydrolysis process—anaerobic digestion reject water[J]. Bioresource Technology, 2021, 341: 125762.
    [49] Prosser J I, Head I M, Stein L Y. The family Nitrosomonadaceae[M]//Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. The prokaryotes: Alphaproteobacteria and Betaproteobacteria. Berlin/Heidelberg: Springer, 2014: 901-918.
    [50] DAVIS-BELMAR CS, NORRIS PR. Ferrous iron and pyrite oxidation by “Acidithiomicrobium” species[J]. Advanced Materials Research, 2009, 71/72/73: 271-274.
    [51] LEWIS WH, TAHON G, GEESINK P, SOUSA DZ, ETTEMA TJG. Innovations to culturing the uncultured microbial majority[J]. Nature Reviews Microbiology, 2021, 19(4): 225-240.
    [52] JIA T, GUO TY, YAO YS, WANG RH, CHAI BF. Seasonal microbial community characteristic and its driving factors in a copper tailings dam in the Chinese Loess Plateau[J]. Frontiers in Microbiology, 2020, 11: 1574.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

向信,殷恒霞,朱肇宇,邱庆辉,柳宇睿,樊嘉凯,邓佳文,张得钧,张本印. 青藏高原极端生境细菌多样性差异及影响因素[J]. 微生物学报, 2023, 63(8): 3235-3251

复制
分享
文章指标
  • 点击次数:422
  • 下载次数: 786
  • HTML阅读次数: 831
  • 引用次数: 0
历史
  • 收稿日期:2022-12-07
  • 最后修改日期:2023-05-06
  • 在线发布日期: 2023-08-03
  • 出版日期: 2023-08-04
文章二维码