铜绿假单胞菌群体感应信号分子PQS的功能多样性研究进展
作者:
基金项目:

国家自然科学基金(32070103,31700031);陕西省秦创原“科学家+工程师”队伍建设项目(2023KXJ-019);陕西省“特支计划”区域发展人才项目(2020-44);陕西省普通高等学校青年杰出人才支持计划项目(2018-111);陕西高校青年创新团队(2022-943)


Research progress in functional diversity of quorum sensing signaling molecule PQS in Pseudomonas aeruginosa
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [106]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    铜绿假单胞菌(Pseudomonas aeruginosa)是一种革兰氏阴性条件致病菌,可对免疫功能低下或损伤的患者造成持续性感染。铜绿假单胞菌能成功感染离不开其自身产生的毒力因子,而这些毒力因子大多数都受群体感应系统(quorum sensing, QS)调控。铜绿假单胞菌有4个QS系统,分别为las系统、rhl系统、pqs系统和iqs系统。2-庚基-3-羟基-4-喹诺酮(Pseudomonasquinolone signal, PQS)作为铜绿假单胞菌pqs系统的信号分子,不仅能够调控许多毒力因子的表达,也能够影响一些微生物和宿主的多种生理过程。本文总结了PQS多种生物学功能,如介导QS系统、调控生物被膜形成、介导外膜囊泡产生及铁摄取、调节宿主免疫活性、介导细胞毒性作用,以及提供种群保护等。本文旨在突出铜绿假单胞菌PQS的功能多样性,并为PQS新功能研究和抗菌药物的研发提供指导。

    Abstract:

    Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that can cause persistent infection in immunocompromised patients. The infection of P. aeruginosa is dependent on its virulence factors, most of which are regulated by the quorum sensing (QS) system. P. aeruginosa has four QS systems:las, rhl, pqs, and iqs. The 2-heptyl-3-hydroxy-4-quinolone (Pseudomonas quinolone signal, PQS), as a signal molecule in the pqs system of P. aeruginosa, can not only regulate the expression of diverse virulence factors but also affect a variety of physiological processes of microorganisms and hosts. This review summarizes the biological functions of PQS, such as mediating the QS system, regulating biofilm formation, mediating outer-membrane vesicle biogenesis, iron acquisition regulating host immune activities and cytotoxicity and providing population protection. The purpose of this review is to highlight the functional diversity of P. aeruginosa PQS and provide guidance for studying new PQS functions and developing antimicrobial agents.

    参考文献
    [1] MIELKO KA, JABŁOŃSKI SJ, MILCZEWSKA J, SANDS D, ŁUKASZEWICZ M, MŁYNARZ P. Metabolomic studies of Pseudomonas aeruginosa[J]. World Journal of Microbiology and Biotechnology, 2019, 35(11):178.
    [2] WHEATLEY RM, CABALLERO JD, van der SCHALK TE, DE WINTER FHR, SHAW LP, KAPEL N, RECANATINI C, TIMBERMONT L, KLUYTMANS J, ESSER M, LACOMA A, PRAT-AYMERICH C, OLIVER A, KUMAR-SINGH S, MALHOTRA-KUMAR S, CRAIG MACLEAN R. Gut to lung translocation and antibiotic mediated selection shape the dynamics of Pseudomonas aeruginosa in an ICU patient[J]. Nature Communications, 2022, 13(1):6523.
    [3] GHANEM SM, ABD EL-BAKY RM, ABOUREHAB MAS, FADL GFM, GAMIL NGFM. Prevalence of quorum sensing and virulence factor genes among Pseudomonas aeruginosa isolated from patients suffering from different infections and their association with antimicrobial resistance[J]. Infection and Drug Resistance, 2023, 16:2371-2385.
    [4] AZAM MW, KHAN AU. Updates on the pathogenicity status of Pseudomonas aeruginosa[J]. Drug Discovery Today, 2019, 24(1):350-359.
    [5] ZUPETIC J, PEÑALOZA HF, BAIN W, HULVER M, METTUS R, JORTH P, DOI Y, BOMBERGER J, PILEWSKI J, NOURAIE M, LEE JS. Elastase activity from Pseudomonas aeruginosa respiratory isolates and ICU mortality[J]. Chest, 2021, 160(5):1624-1633.
    [6] MATEU-BORRÁS M, ZAMORANO L, GONZÁLEZ- ALSINA A, SÁNCHEZ-DIENER I, DOMÉNECH- SÁNCHEZ A, OLIVER A, ALBERTÍ S. Molecular analysis of the contribution of alkaline protease A and elastase B to the virulence of Pseudomonas aeruginosa bloodstream infections[J]. Frontiers in Cellular and Infection Microbiology, 2022, 11:816356.
    [7] LÉTOFFÉ S, WU YZ, DARCH SE, BELOIN C, WHITELEY M, TOUQUI L, GHIGO JM. Pseudomonas aeruginosa production of hydrogen cyanide leads to airborne control of Staphylococcus aureus growth in biofilm and in vivo lung environments[J]. mBio, 2022, 13(5):e0215422.
    [8] MORGAN RN, SALEH SE, FARRAG HA, ABOSHANAB KM. New insights on Pseudomonas aeruginosa exotoxin A-based immunotoxins in targeted cancer therapeutic delivery[J]. Therapeutic Delivery, 2023, 14(1):31-60.
    [9] TWIGG MS, ADU SA, SUGIYAMA S, MARCHANT R, BANAT IM. Mono-rhamnolipid biosurfactants synthesized by Pseudomonas aeruginosa detrimentally affect colorectal cancer cells[J]. Pharmaceutics, 2022, 14(12):2799.
    [10] DÍAZ-PÉREZ SP, SOLIS CS, LÓPEZ-BUCIO JS, VALDEZ ALARCÓN JJ, VILLEGAS J, Reyes-De la Cruz H, CAMPOS-GARCIA J. Pathogenesis in Pseudomonas aeruginosa PAO1 biofilm-associated is dependent on the pyoverdine and pyocyanin siderophores by quorum sensing modulation[J]. Microbial Ecology, 2023, 86(1):727-741.
    [11] SMITH P, SCHUSTER M. Antiactivators prevent self-sensing in Pseudomonas aeruginosa quorum sensing[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(25):e2201242119.
    [12] NEALSON KH, PLATT T, HASTINGS JW. Cellular control of the synthesis and activity of the bacterial luminescent system[J]. Journal of Bacteriology, 1970, 104(1):313-322.
    [13] MARKUS V, PAUL AA, TERALı K, ÖZER N, MARKS RS, GOLBERG K, KUSHMARO A. Conversations in the gut:the role of quorum sensing in normobiosis[J]. International Journal of Molecular Sciences, 2023, 24(4):3722.
    [14] MENG XF, AHATOR SD, ZHANG LH. Molecular mechanisms of phosphate stress activation of Pseudomonas aeruginosa quorum sensing systems[J]. mSphere, 2020, 5(2):e00119-e00120.
    [15] LIN JS, CHENG JL. Quorum sensing in Pseudomonas aeruginosa and its relationship to biofilm development[M]//ACS Symposium Series. Washington, DC:American Chemical Society, 2019:1-16.
    [16] LIN JS, CHENG JL, WANG Y, SHEN XH. The Pseudomonas quinolone signal (PQS):not just for quorum sensing anymore[J]. Frontiers in Cellular and Infection Microbiology, 2018, 8:230.
    [17] KOSTYLEV M, KIM DY, SMALLEY NE, SALUKHE I, GREENBERG EP, DANDEKAR AA. Evolution of the Pseudomonas aeruginosa quorum-sensing hierarchy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(14):7027-7032.
    [18] LEE J, ZHANG LH. The hierarchy quorum sensing network in Pseudomonas aeruginosa[J]. Protein & Cell, 2015, 6(1):26-41.
    [19] RAMPIONI G, FALCONE M, HEEB S, FRANGIPANI E, FLETCHER MP, DUBERN JF, VISCA P, LEONI L, CÁMARA M, WILLIAMS P. Unravelling the genome-wide contributions of specific 2-alkyl-4-quinolones and PqsE to quorum sensing in Pseudomonas aeruginosa[J]. PLoS Pathogens, 2016, 12(11):e1006029.
    [20] HODGKINSON JT, GROSS J, BAKER YR, SPRING DR, WELCH M. A new Pseudomonas quinolone signal (PQS) binding partner:MexG[J]. Chemical Science, 2016, 7(4):2553-2562.
    [21] BAKER YR, HODGKINSON JT, FLOREA BI, ALZA E, GALLOWAY WRJD, GRIMM L, GEDDIS SM, OVERKLEEFT HS, WELCH M, SPRING DR. Identification of new quorum sensing autoinducer binding partners in Pseudomonas aeruginosa using photoaffinity probes[J]. Chemical Science, 2017, 8(11):7403-7411.
    [22] DANDELA R, MANTIN D, CRAVATT BF, RAYO J, MEIJLER MM. Proteome-wide mapping of PQS-interacting proteins in Pseudomonas aeruginosa[J]. Chemical Science, 2018, 9(8):2290-2294.
    [23] GARCÍA-REYES S, SOBERÓN-CHÁVEZ G, COCOTL-YANEZ M. The third quorum-sensing system of Pseudomonas aeruginosa:Pseudomonas quinolone signal and the enigmatic PqsE protein[J]. Journal of Medical Microbiology, 2020, 69(1):25-34.
    [24] MICHALET S, ALLARD PM, COMMUN C, NGOC VTN, NOUWADE K, GIOIA B, DIJOUX-FRANCA MG, WOLFENDER JL, DOLÉANS-JORDHEIM A. Alkyl-Quinolones derivatives as potential biomarkers for Pseudomonas aeruginosa infection chronicity in Cystic Fibrosis[J]. Scientific Reports, 2021, 11:20722.
    [25] ZAIN NMM, WEBB K, STEWART I, HALLIDAY N, BARRETT DA, NASH EF, WHITEHOUSE JL, HONEYBOURNE D, SMYTH AR, FORRESTER DL, KNOX AJ, WILLIAMS P, FOGARTY A, CÁMARA M, BRUCE KD, BARR HL. 2-Alkyl-4-quinolone quorum sensing molecules are biomarkers for culture-independent Pseudomonas aeruginosa burden in adults with cystic fibrosis[J]. Journal of Medical Microbiology, 2021, 70(10):001420.
    [26] WANG SW, FENG YQ, HAN XF, CAI XY, YANG L, LIU CL, SHEN LX. Inhibition of virulence factors and biofilm formation by wogonin attenuates pathogenicity of Pseudomonas aeruginosa PAO1 via targeting pqs quorum-sensing system[J]. International Journal of Molecular Sciences, 2021, 22(23):12699.
    [27] CHATTERJEE P, SASS G, SWIETNICKI W, STEVENS DA. Review of potential Pseudomonas weaponry, relevant to the Pseudomonas-Aspergillus interplay, for the mycology community[J]. Journal of Fungi, 2020, 6(2):81.
    [28] COLEMAN JP, McKNIGHT SL, FARROW JM 3rd, LINDSEY CA, PESCI EC. Pseudomonas aeruginosa PqsA is an anthranilate-coenzyme A ligase[J]. Journal of Bacteriology, 2008, 190(4):1247-1255.
    [29] SCHERTZER JW, BROWN SA, WHITELEY M. Oxygen levels rapidly modulate Pseudomonas aeruginosa social behaviours via substrate limitation of PqsH[J]. Molecular Microbiology, 2010, 77(6):1527-1538.
    [30] DULCEY CE, DEKIMPE V, FAUVELLE DA, MILOT S, GROLEAU MC, DOUCET N, RAHME LG, LÉPINE F, DÉZIEL E. The end of an old hypothesis:the Pseudomonas signaling molecules 4-hydroxy-2-alkylquinolines derive from fatty acids, not 3-ketofatty acids[J]. Chemistry & Biology, 2013, 20(12):1481-1491.
    [31] DREES SL, ERNST S, BELVISO BD, JAGMANN N, HENNECKE U, FETZNER S. PqsL uses reduced flavin to produce 2-hydroxylaminobenzoylacetate, a preferred PqsBC substrate in alkyl quinolone biosynthesis in Pseudomonas aeruginosa[J]. Journal of Biological Chemistry, 2018, 293(24):9345-9357.
    [32] SENEROVIC L, MORIC I, MILIVOJEVIC D, OPSENICA D. Nature-inspired synthetic analogues of quorum sensing signaling molecules as novel therapeutics against Pseudomonas aeruginosa infections[M]//Biodiversity and Biomedicine. Amsterdam:Elsevier, 2020:497-523.
    [33] DREES SL, FETZNER S. PqsE of Pseudomonas aeruginosa acts as pathway-specific thioesterase in the biosynthesis of alkylquinolone signaling molecules[J]. Chemistry & Biology, 2015, 22(5):611-618.
    [34] MUKHERJEE S, MOUSTAFA DA, STERGIOULA V, SMITH CD, GOLDBERG JB, BASSLER BL. The PqsE and RhlR proteins are an autoinducer synthase-receptor pair that control virulence and biofilm development in Pseudomonas aeruginosa[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(40):E9411-E9418.
    [35] GROLEAU MC, de OLIVEIRA PEREIRA T, DEKIMPE V, DÉZIEL E. PqsE is essential for RhlR-dependent quorum sensing regulation in Pseudomonas aeruginosa[J]. mSystems, 2020, 5(3):e00194-20.
    [36] 王帅涛, 高倩倩, 成娟丽, 林金水. 铜绿假单胞菌生物被膜组成及其受群体感应系统和c-di-GMP调控的研究进展[J]. 微生物学报, 2021, 61(5):1106-1122. WANG ST, GAO QQ, CHENG JL, LIN JS. Research progress on Pseudomonas aeruginosa biofilm composition of and its regulation by quorum sensing system and c-di-GMP[J]. Acta Microbiologica Sinica, 2021, 61(5):1106-1122 (in Chinese).
    [37] YIN R, CHENG JL, WANG JY, LI PX, LIN JS. Treatment of Pseudomonas aeruginosa infectious biofilms:challenges and strategies[J]. Frontiers in Microbiology, 2022, 13:955286.
    [38] CAO TY, WEAVER AA, BAEK S, JIA J, SHROUT JD, BOHN PW. Depth distributions of signaling molecules in Pseudomonas aeruginosa biofilms mapped by confocal Raman microscopy[J]. The Journal of Chemical Physics, 2021, 154(20):204201.
    [39] JIA J, PARMAR D, ELLIS JF, CAO TY, CUTRI AR, SHROUT JD, SWEEDLER JV, BOHN PW. Effect of micro-patterned mucin on quinolone and rhamnolipid profiles of mucoid Pseudomonas aeruginosa under antibiotic stress[J]. ACS Infectious Diseases, 2023, 9(1):150-161.
    [40] SOH EYC, SMITH F, GIMENEZ MR, YANG L, VEJBORG RM, FLETCHER M, HALLIDAY N, BLEVES S, HEEB S, CÁMARA M, GIVSKOV M, HARDIE KR, TOLKER-NIELSEN T, IZE B, WILLIAMS P. Disruption of the Pseudomonas aeruginosa Tat system perturbs PQS-dependent quorum sensing and biofilm maturation through lack of the Rieske cytochrome bc1 sub-unit[J]. PLoS Pathogens, 2021, 17(8):e1009425.
    [41] NAZIK H, SASS G, ANSARI SR, ERTEKIN R, HAAS H, DÉZIEL E, STEVENS DA. Novel intermicrobial molecular interaction:Pseudomonas aeruginosa Quinolone Signal (PQS) modulates Aspergillus fumigatus response to iron[J]. Microbiology, 2020, 166(1):44-55.
    [42] COOKE AC, FLOREZ C, DUNSHEE EB, LIEBER AD, TERRY ML, LIGHT CJ, SCHERTZER JW. Pseudomonas quinolone signal-induced outer membrane vesicles enhance biofilm dispersion in Pseudomonas aeruginosa[J]. mSphere, 2020, 5(6):e01109-e01120.
    [43] ALLESEN-HOLM M, BARKEN KB, YANG L, KLAUSEN M, WEBB JS, KJELLEBERG S, MOLIN S, GIVSKOV M, TOLKER-NIELSEN T. A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms[J]. Molecular Microbiology, 2006, 59(4):1114-1128.
    [44] SARKAR S. Release mechanisms and molecular interactions of Pseudomonas aeruginosa extracellular DNA[J]. Applied Microbiology and Biotechnology, 2020, 104(15):6549-6564.
    [45] HAZAN R, QUE YA, MAURA D, STROBEL B, MAJCHERCZYK PA, HOPPER LR, WILBUR DJ, HREHA TN, BARQUERA B, RAHME LG. Auto poisoning of the respiratory chain by a quorum-sensing-regulated molecule favors biofilm formation and antibiotic tolerance[J]. Current Biology, 2016, 26(2):195-206.
    [46] HÄUSSLER S, BECKER T. The Pseudomonas quinolone signal (PQS) balances life and death in Pseudomonas aeruginosa populations[J]. PLoS Pathogens, 2008, 4(9):e1000166.
    [47] NGUYEN D, JOSHI-DATAR A, LEPINE F, BAUERLE E, OLAKANMI O, BEER K, McKAY G, SIEHNEL R, SCHAFHAUSER J, WANG Y, BRITIGAN BE, SINGH PK. Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria[J]. Science, 2011, 334(6058):982-986.
    [48] SKARIYACHAN S, SRIDHAR VS, PACKIRISAMY S, KUMARGOWDA ST, CHALLAPILLI SB. Recent perspectives on the molecular basis of biofilm formation by Pseudomonas aeruginosa and approaches for treatment and biofilm dispersal[J]. Folia Microbiologica, 2018, 63(4):413-432.
    [49] REEN FJ, PHELAN JP, WOODS DF, SHANAHAN R, CANO R, CLARKE S, McGLACKEN GP, O'GARA F. Harnessing bacterial signals for suppression of biofilm formation in the nosocomial fungal pathogen Aspergillus fumigatus[J]. Frontiers in Microbiology, 2016, 7:2074.
    [50] MASHBURN LM, WHITELEY M. Membrane vesicles traffic signals and facilitate group activities in a prokaryote[J]. Nature, 2005, 437(7057):422-425.
    [51] MASHBURN-WARREN L, HOWE J, GARIDEL P, RICHTER W, STEINIGER F, ROESSLE M, BRANDENBURG K, WHITELEY M. Interaction of quorum signals with outer membrane lipids:insights into prokaryotic membrane vesicle formation[J]. Molecular Microbiology, 2008, 69(2):491-502.
    [52] BALA AJ, KUMAR L, CHHIBBER S, HARJAI K. Augmentation of virulence related traits of pqs mutants by Pseudomonas quinolone signal through membrane vesicles[J]. Journal of Basic Microbiology, 2015, 55(5):566-578.
    [53] HORSPOOL AM, SCHERTZER JW. Reciprocal cross-species induction of outer membrane vesicle biogenesis via secreted factors[J]. Scientific Reports, 2018, 8:9873.
    [54] COOKE AC, NELLO AV, ERNST RK, SCHERTZER JW. Analysis of Pseudomonas aeruginosa biofilm membrane vesicles supports multiple mechanisms of biogenesis[J]. PLoS One, 2019, 14(2):e0212275.
    [55] MAYEUX G, GAYET L, LIGUORI L, ODIER M, MARTIN DK, CORTÈS S, SCHAACK B, LENORMAND JL. Cell-free expression of the outer membrane protein OprF of Pseudomonas aeruginosa for vaccine purposes[J]. Life Science Alliance, 2021, 4(6):e202000958.
    [56] AVILA-CALDERÓN ED, RUIZ-PALMA MDS, AGUILERA- ARREOLA MG, VELÁZQUEZ-GUADARRAMA N, RUIZ EA, GOMEZ-LUNAR Z, WITONSKY S, CONTRERAS-RODRÍGUEZ A. Outer membrane vesicles of gram-negative bacteria:an outlook on biogenesis[J]. Frontiers in Microbiology, 2021, 12:557902.
    [57] KIM JY, SUH JW, KANG JS, KIM SB, YOON YK, SOHN JW. Gram-negative bacteria's outer membrane vesicles[J]. Infection & Chemotherapy, 2023, 55(1):1.
    [58] SCHERTZER JW, WHITELEY M. A bilayer-couple model of bacterial outer membrane vesicle biogenesis[J]. mBio, 2012, 3(2):e00297-11.
    [59] TASHIRO Y, ICHIKAWA S, NAKAJIMA-KAMBE T, UCHIYAMA H, NOMURA N. Pseudomonas quinolone signal affects membrane vesicle production in not only gram-negative but also gram-positive bacteria[J]. Microbes and Environments, 2010, 25(2):120-125.
    [60] FLOREZ C, RAAB JE, COOKE AC, SCHERTZER JW. Membrane distribution of the Pseudomonas quinolone signal modulates outer membrane vesicle production in Pseudomonas aeruginosa[J]. mBio, 2017, 8(4):e01034-e01017.
    [61] GAO LY, van der VEEN S. Role of outer membrane vesicles in bacterial physiology and host cell interactions[J]. Infectious Microbes and Diseases, 2020, 2(1):3-9.
    [62] ARRANZ SAN MARTÍN A, DREES SL, FETZNER S. A PQS-cleaving quorum quenching enzyme targets extracellular membrane vesicles of Pseudomonas aeruginosa[J]. Biomolecules, 2022, 12(11):1656.
    [63] MACDONALD IA, KUEHN MJ. Stress-induced outer membrane vesicle production by Pseudomonas aeruginosa[J]. Journal of Bacteriology, 2013, 195(13):2971-2981.
    [64] LIN JS, ZHANG WP, CHENG JL, YANG X, ZHU KX, WANG Y, WEI GH, QIAN PY, LUO ZQ, SHEN XH. A Pseudomonas T6SS effector recruits PQS-containing outer membrane vesicles for iron acquisition[J]. Nature Communications, 2017, 8:14888.
    [65] BREDENBRUCH F, GEFFERS R, NIMTZ M, BUER J, HAUSSLER S. The Pseudomonas aeruginosa quinolone signal (PQS) has an iron-chelating activity[J]. Environmental Microbiology, 2006, 8(8):1318-1329.
    [66] DIGGLE SP, MATTHIJS S, WRIGHT VJ, FLETCHER MP, CHHABRA SR, LAMONT IL, KONG XL, HIDER RC, CORNELIS P, CÁMARA M, WILLIAMS P. The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment[J]. Chemistry & Biology, 2007, 14(1):87-96.
    [67] Li A, Schertzer JW, Yong X. Molecular conformation affects the interaction of the Pseudomonas quinolone signal with the bacterial outer membrane[J]. Journal of Biological Chemistry, 2019, 294(4):1089-1094.
    [68] ROYT PW, HONEYCHUCK RV, PANT RR, ROGERS ML, ASHER LV, LLOYD JR, CARLOS WE, BELKIN HE, PATWARDHAN S. Iron- and 4-hydroxy-2- alkylquinoline-containing periplasmic inclusion bodies of Pseudomonas aeruginosa:a chemical analysis[J]. Bioorganic Chemistry, 2007, 35(2):175-188.
    [69] ROYT PW, HONEYCHUCK RV, RAVICH V, PONNALURI P, PANNELL LK, BUYER JS, CHANDHOKE V, STALICK WM, DeSESSO LC, DONOHUE S, GHEI R, RELYEA JD, RUIZ R. 4-hydroxy-2-nonylquinoline:a novel iron Chelator isolated from a bacterial cell membrane[J]. Bioorganic Chemistry, 2001, 29(6):387-397.
    [70] RAMPIONI G, PUSTELNY C, FLETCHER MP, WRIGHT VJ, BRUCE M, RUMBAUGH KP, HEEB S, CÁMARA M, WILLIAMS P. Transcriptomic analysis reveals a global alkyl-quinolone-independent regulatory role for PqsE in facilitating the environmental adaptation of Pseudomonas aeruginosato plant and animal hosts[J]. Environmental Microbiology, 2010:1659-1673.
    [71] HAZAN R, HE JX, XIAO GP, DEKIMPE V, APIDIANAKIS Y, LESIC B, ASTRAKAS C, DÉZIEL E, LÉPINE F, RAHME LG. Homeostatic interplay between bacterial cell-cell signaling and iron in virulence[J]. PLoS Pathogens, 2010, 6(3):e1000810.
    [72] TATEDA K, ISHII Y, HORIKAWA M, MATSUMOTO T, MIYAIRI S, PECHERE JC, STANDIFORD TJ, ISHIGURO M, YAMAGUCHI K. The Pseudomonas aeruginosa autoinducer N-3-oxododecanoyl homoserine lactone accelerates apoptosis in macrophages and neutrophils[J]. Infection and Immunity, 2003, 71(10):5785-5793.
    [73] LHOSPICE S, GOMEZ NO, OUERDANE L, BRUTESCO C, GHSSEIN G, HAJJAR C, LIRATNI A, WANG SL, RICHAUD P, BLEVES S, BALL G, BOREZÉE-DURANT E, LOBINSKI R, PIGNOL D, ARNOUX P, VOULHOUX R. Pseudomonas aeruginosa zinc uptake in chelating environment is primarily mediated by the metallophore pseudopaline[J]. Scientific Reports, 2017, 7:17132.
    [74] MASTROPASQUA MC, D'ORAZIO M, CERASI M, PACELLO F, GISMONDI A, CANINI A, CANUTI L, CONSALVO A, CIAVARDELLI D, CHIRULLO B, PASQUALI P, BATTISTONI A. Growth ofPseudomonas aeruginosain zinc poor environments is promoted by a nicotianamine-related metallophore[J]. Molecular Microbiology, 2017, 106(4):543-561.
    [75] LIN JS, YANG JS, CHENG JL, ZHANG WP, YANG X, DING W, ZHANG H, WANG Y, SHEN XH. Pseudomonas aeruginosa H3-T6SS combats H2O2 stress by diminishing the amount of intracellular unincorporated iron in a dps-dependent manner and inhibiting the synthesis of PQS[J]. International Journal of Molecular Sciences, 2023, 24(2):1614.
    [76] LIU YC, HUSSAIN F, NEGM O, PAIVA AC, HALLIDAY N, DUBERN JF, SINGH S, MUNTAKA S, WHELDON L, LUCKETT J, TIGHE P, BOSQUILLON C, WILLIAMS P, CÁMARA M, MARTÍNEZ-POMARES L. Contribution of the alkylquinolone quorum-sensing system to the interaction of Pseudomonas aeruginosa with bronchial epithelial cells[J]. Frontiers in Microbiology, 2018, 9:3018.
    [77] OGBECHI J, HUANG YS, CLANCHY FIL, PANTAZI E, TOPPING LM, DARLINGTON LG, WILLIAMS RO, STONE TW. Modulation of immune cell function, IDO expression and kynurenine production by the quorum sensor 2-heptyl-3-hydroxy-4-quinolone (PQS)[J]. Frontiers in Immunology, 2022, 13:1001956.
    [78] Kim K, Kim SH, Lépine F, Cho YH, Lee GR. Global gene expression analysis on the target genes of PQS and HHQ in J774A.1 monocyte/macrophage cells[J]. Microbial Pathogenesis, 2010, 49(4):174-180.
    [79] ABDALLA MY, HOKE T, SERAVALLI J, SWITZER BL, BAVITZ M, FLIEGE JD, MURPHY PJ, BRITIGAN BE. Pseudomonas quinolone signal induces oxidative stress and inhibits heme oxygenase-1 expression in lung epithelial cells[J]. Infection and Immunity, 2017, 85(9):e00176-17.
    [80] HOOI DSW, BYCROFT BW, CHHABRA SR, WILLIAMS P, PRITCHARD DI. Differential immune modulatory activity of Pseudomonas aeruginosa quorum-sensing signal molecules[J]. Infection and Immunity, 2004, 72(11):6463-6470.
    [81] SKINDERSOE ME, ZEUTHEN LH, BRIX S, FINK LN, LAZENBY J, WHITTALL C, WILLIAMS P, DIGGLE SP, FROEKIAER H, COOLEY M, GIVSKOV M. Pseudomonas aeruginosa quorum-sensing signal molecules interfere with dendritic cell-induced T-cell proliferation[J]. FEMS Immunology & Medical Microbiology, 2009, 55(3):335-345.
    [82] KIM K, KIM YU, KOH BH, HWANG SS, KIM SH, LÉPINE F, CHO YH, LEE GR. HHQ and PQS, two Pseudomonas aeruginosa quorum-sensing molecules, down-regulate the innate immune responses through the nuclear factor-kappaB pathway[J]. Immunology, 2010, 129(4):578-588.
    [83] LEGENDRE C, REEN FJ, MOOIJ MJ, MCGLACKEN GP, ADAMS C, O'GARA F. Pseudomonas aeruginosa Alkyl quinolones repress hypoxia-inducible factor 1 (HIF-1) signaling through HIF-1α degradation[J]. Infection and Immunity, 2012, 80(11):3985-3992.
    [84] FREUND JR, MANSFIELD CJ, DOGHRAMJI LJ, ADAPPA ND, PALMER JN, KENNEDY DW, REED DR, JIANG PH, LEE RJ. Activation of airway epithelial bitter taste receptors by Pseudomonas aeruginosa quinolones modulates calcium, cyclic-AMP, and nitric oxide signaling[J]. Journal of Biological Chemistry, 2018, 293(25):9824-9840.
    [85] KUSHWAHA A, KUMAR V, AGARWAL V. Pseudomonas quinolone signal induces organelle stress and dysregulates inflammation in human macrophages[J]. Biochimica et Biophysica Acta (BBA)-General Subjects, 2023, 1867(2):130269.
    [86] HOLBAN AM, BLEOTU C, CHIFIRIUC MC, BEZIRTZOGLOU E, LAZAR V. Role of Pseudomonas aeruginosa quorum sensing (QS) molecules on the viability and cytokine profile of human mesenchymal stem cells[J]. Virulence, 2014, 5(2):303-310.
    [87] HÄNSCH GM, PRIOR B, BRENNER-WEISS G, OBST U, OVERHAGE J. The Pseudomonas quinolone signal (PQS) stimulates chemotaxis of polymorphonuclear neutrophils[J]. Journal of Applied Biomaterials & Functional Materials, 2014, 12(1):21-26.
    [88] MURRAY EJ, DUBERN JF, CHAN WC, CHHABRA SR, WILLIAMS P. A Pseudomonas aeruginosa PQS quorum-sensing system inhibitor with anti-staphylococcal activity sensitizes polymicrobial biofilms to tobramycin[J]. Cell Chemical Biology, 2022, 29(7):1187-1199.e6.
    [89] SAALIM M, VILLEGAS-MORENO J, CLARK BR. Bacterial alkyl-4-quinolones:discovery, structural diversity and biological properties[J]. Molecules, 2020, 25(23):5689.
    [90] DIGGLE SP, WINZER K, CHHABRA SR, WORRALL KE, CÁMARA M, WILLIAMS P. The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR[J]. Molecular Microbiology, 2003, 50(1):29-43.
    [91] ADAMIAK JW, JHAWAR V, BONIFAY V, CHANDLER CE, LEUS IV, ERNST RK, SCHWEIZER HP, ZGURSKAYA HI. Loss of RND-type multidrug efflux pumps triggers iron starvation and lipid A modifications in Pseudomonas aeruginosa[J]. Antimicrobial Agents and Chemotherapy, 2021, 65(10):e0059221.
    [92] TOYOFUKU M, NAKAJIMA-KAMBE T, UCHIYAMA H, NOMURA N. The effect of a cell-to-cell communication molecule, Pseudomonas quinolone signal (PQS), produced by P. aeruginosa on other bacterial species[J]. Microbes and Environments, 2010, 25(1):1-7.
    [93] SASTRY AV, DILLON N, ANAND A, POUDEL S, HEFNER Y, XU SB, SZUBIN R, FEIST AM, NIZET V, PALSSON B. Machine learning of bacterial transcriptomes reveals responses underlying differential antibiotic susceptibility[J]. mSphere, 2021, 6(4):e0044321.
    [94] ZHU Y, TANG YF, RUAN Z, DAI YL, LI ZH, LIN ZY, ZHAO SS, CHENG L, SUN BH, ZENG M, ZHU JX, ZHAO RB, LU BB, LONG HT. Mg(OH)2 nanoparticles enhance the antibacterial activities of macrophages by activating the reactive oxygen species[J]. Journal of Biomedical Materials Research Part A, 2021, 109(11):2369-2380.
    [95] TIAN Y, CAI R, YUE TL, GAO ZP, YUAN YH, WANG ZL. Application of nanostructures as antimicrobials in the control of foodborne pathogen[J]. Critical Reviews in Food Science and Nutrition, 2022, 62(14):3951-3968.
    [96] PEZZONI M, MEICHTRY M, PIZARRO RA, COSTA CS. Role of the Pseudomonas quinolone signal (PQS) in sensitising Pseudomonas aeruginosa to UVA radiation[J]. Journal of Photochemistry and Photobiology B:Biology, 2015, 142:129-140.
    [97] ZABORIN A, ROMANOWSKI K, GERDES S, HOLBROOK C, LEPINE F, LONG J, POROYKO V, DIGGLE SP, WILKE A, RIGHETTI K, MOROZOVA I, BABROWSKI T, LIU DC, ZABORINA O, ALVERDY JC. Red death in Caenorhabditis elegans caused by Pseudomonas aeruginosa PAO1[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(15):6327-6332.
    [98] SZAMOSVÁRI D, SCHUHMACHER T, HAUCK CR, BÖTTCHER T. A thiochromenone antibiotic derived from the Pseudomonas quinolone signal selectively targets the Gram-negative pathogen Moraxella catarrhalis[J]. Chemical Science, 2019, 10(27):6624-6628.
    [99] RIEGER B, THIERBACH S, OMMER M, DIENHART FSV, FETZNER S, BUSCH KB. Pseudomonas Quinolone Signal molecule PQS behaves like a B Class inhibitor at the IQ site of mitochondrial complex I[J]. FASEB BioAdvances, 2020, 2(3):188-202.
    [100] ZEGADŁO K, GIEROŃ M, ŻARNOWIEC P, DURLIK-POPIŃSKA K, KRĘCISZ B, KACA W, CZERWONKA G. Bacterial motility and its role in skin and wound infections[J]. International Journal of Molecular Sciences, 2023, 24(2):1707.
    [101] van KESSEL JC. PQS signaling for more than a quorum:the collective stress response protects healthy Pseudomonas aeruginosa populations[J]. Journal of Bacteriology, 2019, 201(23):e00568-19.
    [102] CAIAZZA NC, SHANKS RMQ, O'TOOLE GA. Rhamnolipids modulate swarming motility patterns of Pseudomonas aeruginosa[J]. Journal of Bacteriology, 2005, 187(21):7351-7361.
    [103] BRU JL, RAWSON B, TRINH C, WHITESON K, HØYLAND-KROGHSBO NM, SIRYAPORN A. PQS produced by the Pseudomonas aeruginosa stress response repels swarms away from bacteriophage and antibiotics[J]. Journal of Bacteriology, 2019, 201(23):e00383-e00319.
    [104] MORALES-SOTO N, DUNHAM SJB, BAIG NF, ELLIS JF, MADUKOMA CS, BOHN PW, SWEEDLER JV, SHROUT JD. Spatially dependent alkyl quinolone signaling responses to antibiotics in Pseudomonas aeruginosa swarms[J]. Journal of Biological Chemistry, 2018, 293(24):9544-9552.
    [105] LEE J, WU JE, DENG YY, WANG J, WANG C, WANG JH, CHANG CQ, DONG YH, WILLIAMS P, ZHANG LH. A cell-cell communication signal integrates quorum sensing and stress response[J]. Nature Chemical Biology, 2013, 9(5):339-343.
    [106] CAO TY, SWEEDLER JV, BOHN PW, SHROUT JD. Spatiotemporal distribution of Pseudomonas aeruginosa alkyl quinolones under metabolic and competitive stress[J]. mSphere, 2020, 5(4):e00426-20.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李盼欣,成娟丽,张恒,林金水. 铜绿假单胞菌群体感应信号分子PQS的功能多样性研究进展[J]. 微生物学报, 2023, 63(9): 3500-3519

复制
分享
文章指标
  • 点击次数:565
  • 下载次数: 1101
  • HTML阅读次数: 1262
  • 引用次数: 0
历史
  • 收稿日期:2023-05-15
  • 最后修改日期:2023-07-20
  • 在线发布日期: 2023-08-29
  • 出版日期: 2023-09-04
文章二维码