醌那霉素生物合成中间产物的一锅酶促体系研究
作者:
基金项目:

国家自然科学基金(32170076,31870026);国家重点研发计划(2021YFC2100600)


One-pot enzymatic total synthesis of intermediates in the biosynthesis of kinamycin
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [6]
  • | | |
  • 文章评论
    摘要:

    【目的】 通过一锅酶法在体外无细胞条件下重构醌那霉素的生物合成途径,实现从原料辅酶A、乙酰-辅酶A和丙二酸到醌那霉素重要中间体的高效转化。【方法】 纯化得到AlpAB、RavC等8个醌那霉素合成相关蛋白和MCAT、MatB等2个辅助蛋白;利用一锅酶法进行体外反应,并用高效液相色谱(high performance liquid chromatography, HPLC)检测反应产物;利用该体系探究Ⅱ型硫酯酶AlpS在合成通路中的功能及作用底物;利用单一变量法对体系温度、pH、最小聚酮合酶(minimal polyketide synthase, minimal PKS)浓度和Ⅱ型硫酯酶AlpS浓度等条件进行优化。【结果】 体系所需的聚酮合酶和辅助蛋白均获得可溶性表达;利用一锅酶法成功合成了醌那霉素的早期重要中间体SEK15、UWM6、rabelomycin、prejadomycin和dehydrorabelomycin;加入AlpS蛋白后以上5种产物产量均有不同程度的提高,其中prejadomycin和dehydrorabelomycin提高较为显著;优化后的反应最适条件为:温度30℃、pH 7.0、最小聚酮合酶(AlpA、AlpB和RavC)浓度各2.8 μmol/L、AlpS 7.2 μmol/L;prejadomycin的产量提高到302 mg/L。【结论】 本研究成功利用一锅酶法在无细胞条件下重构了醌那霉素的早期生物合成途径,合成了醌那霉素的重要中间体SEK15、UWM6、rabelomycin、prejadomycin和dehydrorabelomycin。研究进一步验证了硫酯酶AlpS的链释放功能并推测其作用底物。

    Abstract:

    [Objective] To reconstitute the partial biosynthetic pathway of the type II polyketide kinamycin in a cell-free system starting from CoA, acetyl-CoA and malonate.[Methods] The polyketide synthases (PKSs) and two supplemental proteins (MCAT and MatB) were purified and quantitated. The one-pot enzymatic synthesis of kinamycin intermediates was accomplished, and the products were analyzed by high performance liquid chromatography (HPLC). The system was used to explore the function and exact substrate of the stand-alone thioesterase, AlpS, in the biosynthetic pathway. The parameters including temperature, pH, and the concentrations of minimal PKSs and AlpS were optimized by the single-variable method. [Results] Eight PKSs and two supplemental proteins (MCAT and MatB) were expressed and purified. The intermediates and shunt products in kinamycin biosynthesis were produced in vitro, including SEK15, UWM6, rabelomycin, prejadomycin, and dehydrorabelomycin. The yields of these products, especially prejadomycin and dehydrorabelomycin, were all increased when AlpS was added. The optimal conditions were 30℃, pH 7.0, 2.8 μmol/L minimal PKSs (AlpA, AlpB, and RavC, respectively), and 7.2 μmol/L AlpS, under which the yield of prejadomycin was increased to 302 mg/L. [Conclusion] A one-pot enzymatic synthesis system with high yields of kinamycin-related products including SEK15, UWM6, rabelomycin, prejadomycin, and dehydrorabelomycin was successfully constructed. Furthermore, the chain-release function and substrate specificity of AlpS in the synthetic pathway were investigated.

    参考文献
    [1] HOPWOOD DA. Genetic contributions to understanding polyketide synthases[J]. Chemical Reviews, 1997, 97(7):2465-2498.
    [2] STAUNTON J, WEISSMAN KJ. Polyketide biosynthesis:a millennium review[J]. Natural Product Reports, 2001, 18(4):380-416.
    [3] DAS A, KHOSLA C. Biosynthesis of aromatic polyketides in bacteria[J]. Accounts of Chemical Research, 2009, 42(5):631-639.
    [4] ZHANG Z, PAN HX, TANG GL. New insights into bacterial type II polyketide biosynthesis[J]. F1000Research, 2017, 6:172.
    [5] KHAREL MK, PAHARI P, SHEPHERD MD, TIBREWAL N, NYBO SE, SHAABAN KA, ROHR J. Angucyclines:biosynthesis, mode-of-action, new natural products, and synthesis[J]. Natural Product Reports, 2012, 29(2):264-325.
    [6] GAO GX, LIU XY, XU M, WANG YM, ZHANG F, XU LJ, LV J, LONG QS, KANG QJ, OU HY, WANG Y, ROHR J, DENG ZX, JIANG M, LIN SJ, TAO MF. Formation of an angular aromatic polyketide from a linear anthrene precursor via oxidative rearrangement[J]. Cell Chemical Biology, 2017, 24(7):881-891.e4.
    [7] WANG B, REN JW, LI LY, GUO F, PAN GH, AI GM, AIGLE B, FAN KQ, YANG KQ. Kinamycin biosynthesis employs a conserved pair of oxidases for B-ring contraction[J]. Chemical Communications (Cambridge, England), 2015, 51(42):8845-8848.
    [8] ITŎ S, MATSUYA T, OMURA S, OTANI M, NAKAGAWA A. A new antibiotic, kinamycin[J]. The Journal of Antibiotics, 1970, 23(6):315-317.
    [9] KHDOUR O, SKIBO EB. Quinone methide chemistry of prekinamycins:13C-labeling, spectral global fitting and in vitro studies[J]. Organic & Biomolecular Chemistry, 2009, 7(10):2140-2154.
    [10] COLIS LC, WOO CM, HEGAN DC, LI ZW, GLAZER PM, HERZON SB. The cytotoxicity of (-)-lomaiviticin A arises from induction of double-strand breaks in DNA[J]. Nature Chemistry, 2014, 6(6):504-510.
    [11] HERZON SB, WOO CM. The diazofluorene antitumor antibiotics:structural elucidation, biosynthetic, synthetic, and chemical biological studies[J]. Natural Product Reports, 2012, 29(1):87-118.
    [12] METSÄ-KETELÄ M, PALMU K, KUNNARI T, YLIHONKO K, MÄNTSÄLÄ P. Engineering anthracycline biosynthesis toward angucyclines[J]. Antimicrobial Agents and Chemotherapy, 2003, 47(4):1291-1296.
    [13] WANG B, GUO F, REN JW, AI GM, AIGLE B, FAN KQ, YANG KQ. Identification of Alp1U and Lom6 as epoxy hydrolases and implications for kinamycin and lomaiviticin biosynthesis[J]. Nature Communications, 2015, 6:7674.
    [14] WANG KK A, NG TL, WANG P, HUANG ZD, BALSKUS EP, van der DONK WA. Glutamic acid is a carrier for hydrazine during the biosyntheses of fosfazinomycin and kinamycin[J]. Nature Communications, 2018, 9(1):3687.
    [15] LIU XY, LIU DX, XU M, TAO MF, BAI LQ, DENG ZX, PFEIFER BA, JIANG M. Reconstitution of kinamycin biosynthesis within the heterologous host Streptomyces albus J1074[J]. Journal of Natural Products, 2018, 81(1):72-77.
    [16] FAN KQ, PAN GH, PENG XJ, ZHENG JT, GAO WB, WANG J, WANG WS, LI Y, YANG KQ. Identification of JadG as the B ring opening oxygenase catalyzing the oxidative C-C bond cleavage reaction in jadomycin biosynthesis[J]. Chemistry & Biology, 2012, 19(11):1381-1390.
    [17] WANG P, HONG GJ, WILSON MR, BALSKUS EP. Production of stealthin C involves an S-N-type smiles rearrangement[J]. Journal of the American Chemical Society, 2017, 139(8):2864-2867.
    [18] LIU T, KHAREL MK, ZHU LL, BRIGHT SA, MATTINGLY C, ADAMS VR, ROHR J. Inactivation of the ketoreductase gilU gene of the gilvocarcin biosynthetic gene cluster yields new analogues with partly improved biological activity[J]. ChemBioChem:a European Journal of Chemical Biology, 2009, 10(2):278-286.
    [19] TIBREWAL N, PAHARI P, WANG GJ, KHAREL MK, MORRIS C, DOWNEY T, HOU YP, BUGNI TS, ROHR J. Baeyer-Villiger C-C bond cleavage reaction in gilvocarcin and jadomycin biosynthesis[J]. Journal of the American Chemical Society, 2012, 134(44):18181-18184.
    [20] LIU XY, HUA KM, LIU DX, WU ZL, WANG Y, ZHANG HR, DENG ZX, PFEIFER BA, JIANG M. Heterologous biosynthesis of type II polyketide products using E. coli[J]. ACS Chemical Biology, 2020, 15(5):1177-1183.
    [21] HUA KM, LIU XY, ZHAO YC, GAO YJ, PAN LF, ZHANG HR, DENG ZX, JIANG M. Offloading role of a discrete thioesterase in type II polyketide biosynthesis[J]. mBio, 2020, 11(5):e01334-e01320.
    [22] ZHUANG L, HUANG SH, LIU WQ, KARIM AS, JEWETT MC, LI J. Total in vitro biosynthesis of the nonribosomal macrolactone peptide valinomycin[J]. Metabolic Engineering, 2020, 60:37-44.
    [23] KHAREL MK, PAHARI P, LIAN H, ROHR J. Enzymatic total synthesis of rabelomycin, an angucycline group antibiotic[J]. Organic Letters, 2010, 12(12):2814-2817.
    [24] WANG GJ, CHEN J, ZHU HN, ROHR J. One-pot enzymatic total synthesis of presteffimycinone, an early intermediate of the anthracycline antibiotic steffimycin biosynthesis[J]. Organic Letters, 2017, 19(3):540-543.
    [25] WU JJ, DU GC, ZHOU JW, CHEN J. Metabolic engineering of Escherichia coli for (2S)-pinocembrin production from glucose by a modular metabolic strategy[J]. Metabolic Engineering, 2013, 16:48-55.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

吕丹阳,高耀杰,赵宇春,周洁,邓子新,蒋明. 醌那霉素生物合成中间产物的一锅酶促体系研究[J]. 微生物学报, 2023, 63(9): 3520-3533

复制
分享
文章指标
  • 点击次数:280
  • 下载次数: 850
  • HTML阅读次数: 754
  • 引用次数: 0
历史
  • 收稿日期:2022-12-19
  • 最后修改日期:2023-03-02
  • 在线发布日期: 2023-08-29
  • 出版日期: 2023-09-04
文章二维码