日化产品中洋葱伯克霍尔德氏菌复合群(Bcc)的分类和神秘伯克霍尔德氏菌的耐药性研究
作者:
  • 张淑瑶

    张淑瑶

    广东省科学院微生物研究所 广东省微生物分析检测中心 华南应用微生物国家重点实验室 农业农村部农业微生物组学与精准应用重点实验室 农业农村部农业微生物组学重点实验室 广东省菌种保藏与应用重点实验室, 广东 广州 510070
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 文霞

    文霞

    广东省科学院微生物研究所 广东省微生物分析检测中心 华南应用微生物国家重点实验室 农业农村部农业微生物组学与精准应用重点实验室 农业农村部农业微生物组学重点实验室 广东省菌种保藏与应用重点实验室, 广东 广州 510070
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 苏皑庭

    苏皑庭

    广东省科学院微生物研究所 广东省微生物分析检测中心 华南应用微生物国家重点实验室 农业农村部农业微生物组学与精准应用重点实验室 农业农村部农业微生物组学重点实验室 广东省菌种保藏与应用重点实验室, 广东 广州 510070
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 黄迪

    黄迪

    广东省科学院微生物研究所 广东省微生物分析检测中心 华南应用微生物国家重点实验室 农业农村部农业微生物组学与精准应用重点实验室 农业农村部农业微生物组学重点实验室 广东省菌种保藏与应用重点实验室, 广东 广州 510070
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 陶宏兵

    陶宏兵

    广东迪美生物技术有限公司, 广东 广州 510663
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 陈漪汶

    陈漪汶

    广东省科学院微生物研究所 广东省微生物分析检测中心 华南应用微生物国家重点实验室 农业农村部农业微生物组学与精准应用重点实验室 农业农村部农业微生物组学重点实验室 广东省菌种保藏与应用重点实验室, 广东 广州 510070
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 谢小保

    谢小保

    广东省科学院微生物研究所 广东省微生物分析检测中心 华南应用微生物国家重点实验室 农业农村部农业微生物组学与精准应用重点实验室 农业农村部农业微生物组学重点实验室 广东省菌种保藏与应用重点实验室, 广东 广州 510070
    在期刊界中查找
    在百度中查找
    在本站中查找
基金项目:

广东省重点领域研发计划(2022B1111040002)


Typing and identification of Burkholderia cepacia complex and drug resistance of Burkholderia aenigmatica from daily chemical products
Author:
  • ZHANG Shuyao

    ZHANG Shuyao

    Key Laboratory of Agricultural Microbiomics and Precision Application(Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome(Ministry of Agriculture and Rural Affairs), State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WEN Xia

    WEN Xia

    Key Laboratory of Agricultural Microbiomics and Precision Application(Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome(Ministry of Agriculture and Rural Affairs), State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • SU Aiting

    SU Aiting

    Key Laboratory of Agricultural Microbiomics and Precision Application(Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome(Ministry of Agriculture and Rural Affairs), State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • HUANG Di

    HUANG Di

    Key Laboratory of Agricultural Microbiomics and Precision Application(Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome(Ministry of Agriculture and Rural Affairs), State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • TAO Hongbing

    TAO Hongbing

    Guangdong Demay Biological Technology Co., Ltd., Guangzhou 510663, Guangdong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHEN Yiwen

    CHEN Yiwen

    Key Laboratory of Agricultural Microbiomics and Precision Application(Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome(Ministry of Agriculture and Rural Affairs), State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • XIE Xiaobao

    XIE Xiaobao

    Key Laboratory of Agricultural Microbiomics and Precision Application(Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome(Ministry of Agriculture and Rural Affairs), State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】 对从2020–2022年不同日化产品中分离的29株洋葱伯克霍尔德氏菌复合群(Burkholderia cepacia complex, Bcc)进行分类和分型,另将2020年前来源于日化产品中6株被鉴定为Burkholderia lata的菌株进行分类更正。探究神秘伯克霍尔德氏菌(Burkholderia aenigmatica)的耐药性。【方法】 本文主要应用多位点分型研究方法(multilocus sequence typing, MLST),PCR扩增atpDgltBgyrBrecAlepAphaCtrp B 7个管家基因片段,将测序结果与MLST数据库中的数据比对分析,获得菌株各管家基因的编号和ST型(sequence type),对本检测中心分离自日化产品的Bcc进行分型;利用多位点序列分析(multilocus sequence analysis, MLSA),结合MLST中等位基因的核苷酸序列构建进化树,从而对Bcc进行系统发育分析和鉴定。利用最小抑菌浓度法(minimum inhibitory concentration, MIC)测定Bcc对常见防腐剂(1,3-二羟甲基-5,5-二甲基乙内酰脲、卡松、苯甲酸钠、山梨酸钾)和抗生素(头孢他啶、卡那霉素、四环素)的耐药性。【结果】 本文29株Bcc菌株共有5个菌种类型(B. cenocepaciaB. contaminansB. aenigmaticaB. vietnamiensisB. stabilis)和15个不同分型,分类过程中发现了7个新等位基因,7个新ST分型(ST2118、ST2120、ST2122、ST2127、ST2128、ST2129和ST2130)并鉴定了其种类。另将2020年前来源于样品中6株被鉴定为Burkholderia lata的菌株用MLST法重新分类鉴定,其鉴定结果均为Burkholderia aenigmatica。11株B. aenigmatica分离株中只有1株对头孢他啶耐药,其他菌均对其不耐药,分别有9株和8株B. aenigmatica对卡那霉素和四环素耐药。卡松和1,3-二羟甲基-5,5-二甲基乙内酰脲(1,3-dimethylmethylol-5,5-dimethylhydantoin, DMDMH)在最大允许量范围内能有效抑制B. aenigmatica的生长,有9株B. aenigmatica表现出苯甲酸钠和山梨酸钾的耐药性。【结论】 Bcc的分类较为复杂且存在许多未知等位基因和分型,Burkholderia aenigmatica已经成为污染日化产品的主要Bcc菌株。大部分B. aenigmatica对氨基糖苷类和四环素类抗生素具有耐药性,大部分来自日化产品中的B. aenigmatica对苯甲钠和山梨酸钾均具有耐药性。

    Abstract:

    [Objective] To type and identify 29 strains of Burkholderia cepacia complex (Bcc) isolated from daily chemical products in 2020–2022, re-identify 6 isolates identified as Burkholderia lata from daily chemicals products before 2020, and reveal the antibiotic resistance of Burkholderia aenigmatica sp. nov. [Methods] Bcc isolates from daily chemical products were subjected to multilocus sequence typing (MLST). Seven housekeeping genes, atpD, gltB, gyrB, recA, lepA, phaC, and trpB, were amplified by PCR. The sequencing results were compared with the data in MLST database to obtain the accession number of each housekeeping gene and the sequence type of each strain. Multilocus sequence analysis (MLSA) was employed to construct a phylogenetic tree based on the nucleotide sequences of alleles in MLST. The resistance of Bcc to common preservatives (1,3-dimethylmethylol-5,5-dimethylhydantoin, kathon, sodium benzoate, and potassium sorbate) and antibiotics (ceftazidime, kanamycin, and tetracycline) were determined by the minimum inhibitory concentration (MIC) method. [Results] The 29 Bcc isolates were identified as 5 species (B. cenocepacia, B. contaminans, B. aenigmatica, B. vietnamiensis, and B. stabilis) and typed as 15 sequence types. Seven new alleles and seven new sequence types (ST2118, ST2120, ST2122, ST2127, ST2128, ST2129, and ST2130) were identified in this study. The six B. lata strains from the samples before 2020 were re-identified as B. aenigmatica sp. nov. Only one of the 11 B. aenigmatica isolates was resistant to ceftazidime, and nine and eight B. aenigmatica isolates were resistant to kanamycin and tetracycline, respectively. Kathon and 1,3-dimethylmethylol-5,5-dimethylhydantoin (DMDMH) within the maximum permissible concentrations can effectively inhibit the growth of B. aenigmatica. Nine B. aenigmatica strains showed resistance to sodium benzoate and potassium sorbate. [Conclusion] The identification of Bcc is complex and there are unknown alleles and sequence types. B. aenigmatica has become the main Bcc species contaminating daily chemical products. Most strains of B. aenigmatica are resistant to aminoglycosides and tetracyclines. Most B. aenigmatica isolates from the daily chemical products have resistance to sodium benzoate and potassium sorbate.

    参考文献
    [1] de SMET B, MAYO M, PEETERS C, ZLOSNIK JEA, SPILKER T, HIRD TJ, LiPUMA JJ, KIDD TJ, KAESTLI M, GINTHER JL, WAGNER DM, KEIM P, BELL SC, JACOBS JA, CURRIE BJ, VANDAMME P. Burkholderia stagnalis sp. nov. and Burkholderia territorii sp. nov., two novel Burkholderia cepacia complex species from environmental and human sources[J]. International Journal of Systematic and Evolutionary Microbiology, 2015, 65(7):2265-2271.
    [2] DEPOORTER E, de CANCK E, PEETERS C, WIEME AD, CNOCKAERT M, ZLOSNIK JEA, LiPUMA JJ, COENYE T, VANDAMME P. Burkholderia cepacia complex taxon K:where to split?[J]. Frontiers in Microbiology, 2020, 11:1594.
    [3] MARTINA P, LEGUIZAMON M, PRIETO CI, SOUSA SA, MONTANARO P, DRAGHI WO, STÄMMLER M, BETTIOL M, de CARVALHO CCCR, PALAU J, FIGOLI C, ALVAREZ F, BENETTI S, LEJONA S, VESCINA C, FERRERAS J, LASCH P, LAGARES A, ZORREGUIETA A, LEITÃO JH, et al. Burkholderia puraquae sp. nov., a novel species of the Burkholderia cepacia complex isolated from hospital settings and agricultural soils[J]. International Journal of Systematic and Evolutionary Microbiology, 2018, 68(1):14-20.
    [4] PETER, V, PETER D. Classification and identification of the Burkholderia cepacia complex:past, present and future[J]. Systematic and Applied Microbiology, 2011, 34(2):87-95.
    [5] LEONG LEX, LAGANA D, CARTER GP, WANG QN, SMITH K, STINEAR TP, SHAW D, SINTCHENKO V, WESSELINGH SL, BASTIAN I, ROGERS GB. Burkholderia lata infections from intrinsically contaminated chlorhexidine mouthwash, Australia, 2016[J]. Emerging Infectious Diseases, 2018, 24(11):2109-2111.
    [6] RUSHTON L, SASS A, BALDWIN A, DOWSON CG, DONOGHUE D, MAHENTHIRALINGAM E. Key role for efflux in the preservative susceptibility and adaptive resistance of Burkholderia cepacia complex bacteria[J]. Antimicrobial Agents and Chemotherapy, 2013, 57(7):2972-2980.
    [7] 王萍, 柳玉红. 我国化妆品用防腐剂及分析方法的研究进展[J]. 环境与健康杂志, 2007, 24(7):557-559. WANG P, LIU YH. Cosmetics preservatives and analysis methods used in China[J]. Journal of Environment and Health, 2007, 24(7):557-559 (in Chinese).
    [8] CONDELL O, IVERSEN C, COONEY S, POWER KA, WALSH C, BURGESS C, FANNING S. Efficacy of biocides used in the modern food industry to control Salmonella enterica, and links between biocide tolerance and resistance to clinically relevant antimicrobial compounds[J]. Applied and Environmental Microbiology, 2012, 78(9):3087-3097.
    [9] ROSE H, BALDWIN A, DOWSON CG, MAHENTHIRALINGAM E. Biocide susceptibility of the Burkholderia cepacia complex[J]. Journal of Antimicrobial Chemotherapy, 2009, 63(3):502-510.
    [10] WEN X, XIE XB, ZHANG SY, SUN TL, LIU JX, LI WR. Burkholderia cepacia complex in personal care products:molecular epidemiology and susceptibility to preservatives[J]. Journal of Cosmetic Science, 2020, 71(3):133-148.
    [11] CUNNINGHAM-OAKES E, POINTON T, MURPHY B, CAMPBELL-LEE S, WEBSTER G, CONNOR TR, MAHENTHIRALINGAM E. Genomics reveals the novel species placement of industrial contaminant isolates incorrectly identified as Burkholderia lata[J]. Microbial Genomics, 2021, 7(4):000564.
    [12] de VOLDER AL, TEVES S, ISASMENDI A, PINHEIRO JL, IBARRA L, BREGLIA N, HERRERA T, VAZQUEZ M, HERNANDEZ C, DEGROSSI J. Distribution of Burkholderia cepacia complex species isolated from industrial processes and contaminated products in Argentina[J]. International Microbiology, 2021, 24(2):157-167.
    [13] KATHERINE AR, HERBERT PS. Antibiotic resistance in Burkholderia species[J]. Drug Resistance Updates, 2016, 28:82-90.
    [14] EVERAERT A, COENYE T. Effect of β-lactamase inhibitors on in vitro activity of β-lactam antibiotics against Burkholderia cepacia complex species[J]. Antimicrobial Resistance & Infection Control, 2016, 5(1):44.
    [15] Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing[S]. M100 Ed31, 2021.
    [16] 陈岑, 崔邶周, 高艳琳, 程巧鸳. 淋洗类化妆品中异噻唑啉酮类防腐剂使用情况分析[J]. 日用化学品科学, 2022, 45(3):26-31, 57. CHEN C, CUI BZ, GAO YL, CHENG QY. Analysis on the use of isothiazolinone preservatives in rinse-off cosmetics[J]. Detergent & Cosmetics, 2022, 45(3):26-31, 57 (in Chinese).
    [17] 陈国帅, 陈晓云, 林婉微. 《化妆品安全技术规范》准用防腐剂列表解读[J]. 日用化学品科学, 2016, 39(9):37-42. CHEN GS, CHEN XY, LIN WW. Interpretation of preservatives in safety and technical standards for cosmetics[J]. Detergent & Cosmetics, 2016, 39(9):37-42 (in Chinese).
    [18] 杨娟, 刘永龙, 林芮, 梁健, 陈娟, 黄小茉, 邱晓颖. 几种常用防腐剂对日化产品中腐败微生物抑制效果研究[J]. 工业微生物, 2016, 46(4):34-37. YANG J, LIU YL, LIN R, LIANG J, CHEN J, HUANG XM, QIU XY. Effect evaluation of antiseptic preservatives commonly used in cosmetic products[J]. Industrial Microbiology, 2016, 46(4):34-37 (in Chinese).
    [19] 袁晓倩, 茹歌, 陈丹丹, 王柯, 郑荣. 化妆品中防腐剂1,3-二羟甲基-5,5-二甲基乙内酰脲的水解机理及测定方法研究[J]. 香料香精化妆品, 2020(1):51-54, 58. YUAN XQ, RU G, CHEN DD, WANG K, ZHENG R. Study on the hydrolysis mechanism and determination method of 1,3-dihydroxymethyl-5,5-dimethylhydantoin in cosmetics[J]. Flavour Fragrance Cosmetics, 2020(1):51-54, 58 (in Chinese).
    [20] 刘广源, 孙晨亮. 新型牙膏防腐剂的防腐研究[J]. 口腔护理用品工业, 2018, 28(1):8-10. LIU GY, SUN CL. Study on anticorrosion of new toothpaste preservative[J]. Oral Care Industry, 2018, 28(1):8-10 (in Chinese).
    [21] 任剑豪, 吴卫国. 山梨酸及其钾盐防腐效果的研究进展[J]. 南方农业, 2017, 11(17):77-78. REN JH, WU WG. Research progress on anticorrosion effect of sorbic acid and its potassium salt[J]. South China Agriculture, 2017, 11(17):77-78 (in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张淑瑶,文霞,苏皑庭,黄迪,陶宏兵,陈漪汶,谢小保. 日化产品中洋葱伯克霍尔德氏菌复合群(Bcc)的分类和神秘伯克霍尔德氏菌的耐药性研究[J]. 微生物学报, 2023, 63(9): 3616-3627

复制
分享
文章指标
  • 点击次数:409
  • 下载次数: 1286
  • HTML阅读次数: 1678
  • 引用次数: 0
历史
  • 收稿日期:2023-01-13
  • 最后修改日期:2023-03-17
  • 在线发布日期: 2023-08-29
  • 出版日期: 2023-09-04
文章二维码