典型重金属对氯苯类有机物生物转化影响及分子机制研究进展
作者:
基金项目:

重庆市自然科学基金(CSTB2022NSCQ-MSX0540);国家自然科学基金(51978117,52200145)


Progress in the effects and molecular mechanisms of typical heavy metals on the biotransformation of chlorobenzenes
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [91]
  • | | | |
  • 文章评论
    摘要:

    重金属和有机物相互作用,形成共污染,是当今面临的重要环境问题之一。明晰重金属作用下氯苯类化合物(chlorobenzenes,CBs)的转化特性以及典型重金属对CBs生物降解的影响机制,对有效修复重金属-有机物共污染有重要意义。本文首先对CBs生物降解的研究现状进行了总结,明晰了当前CBs降解的主要功能菌属类型,包括伯克霍尔德菌(Burkholderia),假单胞菌(Pseudomonas),脱卤球菌(Dehalobium)和脱卤拟球菌(Dehalococcoides)等;而后概述了重金属与CBs的共污染现状,发现绝大多数污染中存在重金属与CBs共污染现象;随后系统综述了典型重金属对CBs生物转化的影响,表明好氧或厌氧条件下大多数重金属离子对CBs生物转化存在抑制作用,受金属离子种类、浓度、价态及pH影响显著;另外,对重金属影响下的CBs转化机制进行了分析,基于3方面影响构建了分子机制模型。最后对目前还存在的问题与局限性进行了分析,并对未来发展方向进行了展望,以期为重金属-有机物共污染的修复提供支撑。

    Abstract:

    The co-pollution of heavy metals and organic compounds is one of the major environmental issues today. Understanding the degradation and transformation characteristics of chlorobenzenes (CBs) under the influence of heavy metals is of great significance for remediation of the co-pollution. We summarized the current research status of CB biodegradation, clarified the main functional bacterial genera including Burkholderia, Pseudomonas, Dehalobium, and Dehalococcoides involved in CB degradation, and then outlined the co-pollution status of heavy metals and CBs. The co-pollution of heavy metals and CBs exists in the vast majority of pollution cases. Further, we systematically reviewed the effects of typical heavy metals on the biotransformation and degradation of CBs. Most heavy metal ions exert inhibitory effects on the biotransformation and degradation of CBs under aerobic or anaerobic conditions, and their inhibitory effects are significantly influenced by pH and the species, concentration, and valence state of heavy metals. In addition, the mechanisms of CB transformation and degradation under the influence of heavy metals were analyzed. A molecular mechanism model was constructed with consideration to three influencing mechanisms. Finally, we analyzed the current problems and limitations and prospected the future development direction, aiming to provide support for the remediation of heavy metal-organic co-pollution.

    参考文献
    [1] REN ZY, LU Y, LI QS, SUN YZ, WU CM, DING Q. Occurrence and characteristics of PCDD/Fs formed from chlorobenzenes production in China[J]. Chemosphere, 2018, 205:267-274.
    [2] YUAN YQ, NING XA, ZHANG YP, LAI XJ, LI DP, HE ZL, CHEN XH. Chlorobenzene levels, component distribution, and ambient severity in wastewater from five textile dyeing wastewater treatment plants[J]. Ecotoxicology and Environmental Safety, 2020, 193:110257.
    [3] 王玉芬, 张肇铭, 胡筱敏, 贡俊. 微生物法去除水中氯苯类化合物的研究进展[J]. 微生物学通报, 2008, 35(6):949-954. WANG YF, ZHANG ZM, HU XM, GONG J. The research progress of treating chlorobenzenes in waste-water by microorganisms[J]. Microbiology, 2008, 35(6):949-954(in Chinese).
    [4] CHOW SJ, LORAH MM, WADHAWAN AR, DURANT ND, BOUWER EJ. Sequential biodegradation of 1, 2, 4-trichlorobenzene at oxic-anoxic groundwater interfaces in model laboratory columns[J]. Journal of Contaminant Hydrology, 2020, 231:103639.
    [5] YANG MM, MAO HT, LI HL, YANG FC, CAO FF, WANG Y. Quantifying concentrations and emissions of hexachlorobutadiene-a new atmospheric persistent organic pollutant in Northern China[J]. Environmental Research, 2023, 216:114139.
    [6] OHURA T, SUHARA T, KAMIYA Y, IKEMORI F, KAGEYAMA S, NAKAJIMA D. Distributions and multiple sources of chlorinated polycyclic aromatic hydrocarbons in the air over Japan[J]. Science of The Total Environment, 2019, 649:364-371.
    [7] BRAHUSHI F, KENGARA FO, SONG Y, JIANG X, MUNCH JC, WANG F. Fate processes of chlorobenzenes in soil and potential remediation strategies:a review[J]. Pedosphere, 2017, 27(3):407-420.
    [8] GARG SK, GARG S, TRIPATHI M, SINGH K. Microbial treatment of tannery effluent by augmenting psychrotrophic Pseudomonas putida isolate[J]. Environmental Pollution and Protection, 2018, 3(1):23-39.
    [9] ARJOON A, OLANIRAN AO, PILLAY B. Kinetics of heavy metal inhibition of 1, 2-dichloroethane biodegradation in co-contaminated water[J]. Journal of Basic Microbiology, 2015, 55(3):277-284.
    [10] LEE CL, HSIEH MT, FANG MD. Aliphatic and polycyclic aromatic hydrocarbons in sediments of Kaohsiung Harbour and adjacent coast, Taiwan[J]. Environmental Monitoring and Assessment, 2005, 100(1):217-234.
    [11] JACKSON WA, PARDUE JH. Assessment of metal inhibition of reductive dechlorination of hexachlorobenzene at a superfund site[J]. Environmental Toxicology and Chemistry, 1998, 17(8):1441-1446.
    [12] OLANIRAN AO, BALGOBIND A, PILLAY B. Bioavailability of heavy metals in soil:impact on microbial biodegradation of organic compounds and possible improvement strategies[J]. International Journal of Molecular Sciences, 2013, 14(5):10197-10228.
    [13] ARJOON A, OLANIRAN AO, PILLAY B. Co-contamination of water with chlorinated hydrocarbons and heavy metals:challenges and current bioremediation strategies[J]. International Journal of Environmental Science and Technology, 2013, 10(2):395-412.
    [14] YOSHIDA N, TAKAHASHI N, HIRAISHI A. Phylogenetic characterization of a polychlorinated-dioxin-dechlorinating microbial community by use of microcosm studies[J]. Applied and Environmental Microbiology, 2005, 71(8):4325-4334.
    [15] QIAO WJ, LUO F, LOMHEIM L, MACK EE, YE SJ, WU JC, EDWARDS EA. Natural attenuation and anaerobic benzene detoxification processes at a chlorobenzene-contaminated industrial site inferred from field investigations and microcosm studies[J]. Environmental Science & Technology, 2018, 52(1):22-31.
    [16] KURT Z, SPAIN JC. Biodegradation of chlorobenzene, 1,2-dichlorobenzene, and 1,4-dichlorobenzene in the vadose zone[J]. Environmental Science and Technology, 2013, 47(13):6846-6854.
    [17] LI ZX, YANG BR, JIN JX, PU YC, DING C. The operating performance of a biotrickling filter with Lysinibacillus fusiformis for the removal of high-loading gaseous chlorobenzene[J]. Biotechnology Letters, 2014, 36(10):1971-1979.
    [18] ZHOU QW, ZHANG LL, CHEN JM, XU BC, CHU GW, CHEN JF. Performance and microbial analysis of two different inocula for the removal of chlorobenzene in biotrickling filters[J]. Chemical Engineering Journal, 2016, 284:174-181.
    [19] YE JX, LIN TH, HU JT, POUDEL R, CHENG ZW, ZHANG SH, CHEN JM, CHEN DZ. Enhancing chlorobenzene biodegradation by Delftia tsuruhatensis using a water-silicone oil biphasic system[J]. International Journal of Environmental Research and Public Health, 2019, 16(9):1629.
    [20] 王战勇, 苏婷婷, 张洪林. 氯苯降解菌株的选育[J]. 抚顺石油学院学报, 2002, 22(4):20-22. WANG ZY, SU TT, ZHANG HL. Isolation of the stains degrading chlorobenzene[J]. Journal of Fushun Petroleum Institute, 2002, 22(4):20-22(in Chinese).
    [21] PATEL A, VYAS TK. Chlorobenzene degradation via ortho-cleavage pathway by newly isolated Microbacterium sp. strain TAS1CB from a petrochemical-contaminated site[J]. Soil and Sediment Contamination:An International Journal, 2015, 24(7):786-795.
    [22] NGUYEN OT, DANH HA D. Degradation of chlorotoluenes and chlorobenzenes by the dual-species biofilm ofComamonas testosteroni strain KT5 and Bacillus subtilis strain DKT[J]. Annals of Microbiology, 2019, 69(3):267-277.
    [23] MOREIRA IS, AMORIM CL, CARVALHO MF, CASTRO PML. Co-metabolic degradation of chlorobenzene by the fluorobenzene degrading wild strain Labrys portucalensis[J]. International Biodeterioration and Biodegradation, 2012, 72:76-81.
    [24] BAPTISTA IIR, ZHOU NY, EMANUELSSON EAC, PEEVA LG, LEAK DJ, MANTALARIS A, LIVINGSTON AG. Evidence of species succession during chlorobenzene biodegradation[J]. Biotechnology and Bioengineering, 2008, 99(1):68-74.
    [25] ZHANG SH, YING ZY, YOU JP, YE JX, CHENG ZW, CHEN DZ, CHEN JM. Superior performance and mechanism of chlorobenzene degradation by a novel bacterium[J]. RSC Advances, 2019, 9(26):15004-15012.
    [26] 王永强, 毕贵芹, 张洪林, 邱峰, 蒋林时. 氯苯降解菌的筛选及其降解特性的研究[J]. 工业用水与废水, 2003, 34(6):35-36. WANG YQ, BI GQ, ZHANG HL, QIU F, JIANG LS. Screening of chlorobenzene-degrading bacteria and A study of their degrading performance[J]. Industrial Water and Wastewater, 2003, 34(6):35-36(in Chinese).
    [27] 张晶, 王战勇, 苏婷婷. 氯苯降解菌的筛选及降解条件[J]. 辽宁石油化工大学学报, 2005, 25(1):36-39. ZHANG J, WANG ZY, SU TT. Isolation of a stain of degrading chlorobenzene and its degrading conditions[J]. Journal of Liaoning University of Petroleum and Chemical Technology, 2005, 25(1):36-39(in Chinese).
    [28] 李明堂, 郝林琳, 崔俊涛, 曹国军, 徐镜波. 好氧氯苯降解菌的分离鉴定[J]. 微生物学报, 2010, 50(5):586-592. LI MT, HAO LL, CUI JT, CAO GJ, XU JB. Identification and characterization of an aerobic bacterium degrading chlorobenzene[J]. Acta Microbiologica Sinica, 2010, 50(5):586-592(in Chinese).
    [29] 冷守琴, 魏芳, 张丽丽, 陈建孟. 一株氯苯降解新菌株的分离鉴定及其降解特性研究[J]. 环境科学与技术, 2011, 34(2):6-11. LENG SQ, WEI F, ZHANG LL, CHEN JM. Isolation, identification and biodegradation characteristics of a novel chlorobenzene-degrading bacterial strain[J]. Environmental Science & Technology, 2011, 34(2):6-11(in Chinese).
    [30] 李朝霞, 牛仙, 何文艺, 仝妍妍, 金辉, 丁成. 高浓度氯苯优势降解菌的筛选及其降解酶的纯化[J]. 微生物学报, 2013, 53(5):455-463. LI ZX, NIU X, HE WY, TONG YY, JIN H, DING C. Screening of chlorobenzene-degrading bacterium and purification of its degradation enzyme[J]. Acta Microbiologica Sinica, 2013, 53(5):455-463(in Chinese).
    [31] 谢鲲鹏, 谢明杰, 宁淑香, 王海涛, 李银霞, 周集体. 1株氯苯降解菌的分离鉴定及降解特性研究[J]. 辽宁师范大学学报(自然科学版), 2012, 35(4):538-543. XIE KP, XIE MJ, NING SX, WANG HT, LI YX, ZHOU JT. Isolation, identification and degradation characteristics of a chlorobenzene degrading bacterium[J]. Journal of Liaoning Normal University (Natural Science Edition), 2012, 35(4):538-543(in Chinese).
    [32] 戴青华, 曹晓丹, 孙向武. 1,4-二氯苯降解菌的分离及其降解特性研究[J]. 环境工程学报, 2009, 3(12):2219-2222. DAI QH, CAO XD, SUN XW. Study on isolation and characterization of a dichlorobenzene-degrading bacterial strain[J]. Chinese Journal of Environmental Engineering, 2009, 3(12):2219-2222(in Chinese).
    [33] 刘慧慧, 杨春生, 丁成. 一株1, 2-二氯苯降解菌的分离鉴定及其降解特性[J]. 环境工程学报, 2011, 5(9):2151-2155. LIU HH, YANG CS, DING C. Isolation and characterization of a 1, 2-dichlorobenzene-degrading bacterial strain[J]. Chinese Journal of Environmental Engineering, 2011, 5(9):2151-2155(in Chinese).
    [34] 宋蕾, 王慧, 施汉昌, 胡洪营. 1, 2, 4-三氯苯降解菌的分离及其降解质粒的研究[J]. 中国环境科学, 2005, 25(4):385-388. SONG L, WANG H, SHI HC, HU HY. Studies on isolation of 1, 2, 4-trichlorobenzene-degrading strain and its degradative plasmid[J]. China Environmental Science, 2005, 25(4):385-388(in Chinese).
    [35] 王芳, DÖRFLER U, SCHMID M, GRUNDMANN S, MUNCH J, JIANG X, SCHROLL R. 1,2,4-三氯苯矿化菌的鉴定与功能分析[J]. 环境科学, 2007, 28(5):1082-1087. WANG F, DÖRFLER U, SCHMID M, GRUNDMANN S, MUNCH J, JIANG X, SCHROLL R. Identification of 1, 2, 4-trichlorobenzene-mineralizing bacteria and their function analysis[J]. Environmental Science, 2007, 28(5):1082-1087(in Chinese).
    [36] MARCO-URREA E, PÉREZ-TRUJILLO M, CAMINAL G, VICENT T. Dechlorination of 1,2,3-and 1,2,4-trichlorobenzene by the white-rot fungus Trametes versicolor[J]. Journal of Hazardous Materials, 2009, 166(2/3):1141-1147.
    [37] 张丽丽, 陈建孟, 朱润晔, 冷守琴, 王家德, 蒋轶锋. 具有氯苯降解能力的皮式罗尔斯顿菌H2及其应用[P]. 中国:ZL201010181332.6. 2012.08.08. ZHANG LL, CHEN JM, ZHU RY, LENG SQ, WANG JD, JIANG YF. Ralstonia pilosa H2 capable of degrading chlorobenzene and its application[P]. China:ZL201010181332.6. 2012.08.08(in Chinese).
    [38] 胡金星, 沈超峰, 崔静岚. 一种多氯联苯降解菌的筛选方法及一株多氯联苯降解菌[P]. 中国:ZL201410041265.6. 2015.09.30. HU JX, SHEN CF, CUI JL. A screening method for polychlorinated biphenyls degrading bacteria and a polychlorinated biphenyls degrading bacteria[P]. China:ZL201410041265.6. 2015.09.30(in Chinese).
    [39] 陈建孟, 叶杰旭, 陈东之, 李伟, 林彤晖, 诸葛蕾, 江宁馨. 戴尔福特菌LW26及其在降解氯苯中的应用[P]. 中国:ZL201510498197.0. 2019.02.01. CHEN JM, YE JX, CHEN DZ, LI W, LIN DH, JIANG NX. Delft bacteria LW26 and its application in the degradation of chlorobenzene[P]. China:ZL201510498197.0. 2019.02.01(in Chinese).
    [40] 张文艺, 黄彬, 郭惠娟, 苏鹏, 毛林强, 王明新. 一株2,4-二氯苯酚降解菌及降解方法[P]. 中国:ZL201810566333.9. 2022.03.11. ZHANG WY, HUANG B, GUO HJ, SU P, MAO LQ, WANG MX. A 2,4-dichlorophenol degrading bacteria and degradation method[P]. China:ZL201810566333.9. 2022.03.11(in Chinese).
    [41] 张士汉, 应赞赞, 尤菊平, 陈建孟. 一株高效降解氯苯的苍白杆菌ZJUTCB-1及其应用[P]. 中国:ZL201811385402.2. 2022.07.22. ZHANG SH, YING ZZ, YOU JP, CHEN JM. A strain of Ochrobactrum ZJUTCB-1 with efficient degradation of chlorobenzene and its application[P]. China:ZL201811385402.2. 2022.07.22(in Chinese).
    [42] 杨洪江, 卢彦珍. 氯苯降解菌的筛选鉴定及降解特性研究[J]. 微生物学通报, 2009, 36(4):575-580. YANG HJ, LU YZ. Isolation and characterization of chlorobenzene degrading bacteria[J]. Microbiology, 2009, 36(4):575-580(in Chinese).
    [43] PEPI M, LOBIANCO A, RENZI M, PERRA G, BERNARDINI E, MARVASI M, GASPERINI S, VOLTERRANI M, FRANCHI E, HEIPIEPER HJ, FOCARDI SE. Two naphthalene degrading bacteria belonging to the Genera Paenibacillus and Pseudomonas isolated from a highly polluted lagoon perform different sensitivities to the organic and heavy metal contaminants[J]. Extremophiles, 2009, 13(5):839-848.
    [44] 黄金锐. 氯苯降解菌的分离鉴定及降解途径研究[D]. 哈尔滨:哈尔滨师范大学硕士学位论文, 2022. HUANG JR. Isolation, identification and degradation pathway of chlorobenzene degrading bacteria[D]. Harbin:Master's Thesis of Harbin Normal University, 2022(in Chinese).
    [45] 刘建强, 王银, 韦秀秀, 李琦, 黄大林. 污水中氯苯类化合物降解菌的筛选及降解特性的研究[J]. 湖北农业科学, 2017, 56(2):245-247, 253. LIU JQ, WANG Y, WEI XX, LI Q, HUANG DL. Screening of chlorobenzene compounds degradation bacteria and research of degradation characteristics in waste water[J]. Hubei Agricultural Sciences, 2017, 56(2):245-247, 253(in Chinese).
    [46] JAYACHANDRAN G, GÖRISCH H, ADRIAN L. Dehalorespiration with hexachlorobenzene and pentachlorobenzene byDehalococcoides sp. strain CBDB1[J]. Archives of Microbiology, 2003, 180(6):411-416.
    [47] 吕良华, 乔文静, 张晗, 叶淑君, 吴吉春, 王水, 蒋建东. 脱卤杆菌介导的厌氧微生物富集菌群对1,2,4-三氯苯的降解特性[J]. 地学前缘, 2022:1-9. LÜ NH, QIAO WJ, ZHANG H, YE SJ, WU JC, WANG S, JIANG JD. Degradation of 1, 2, 4-trichlorobenzene by an anaerobic enrichment culture mediated by Dehalobacter species[J]. Earth Science Frontiers, 2022:1-9(in Chinese).
    [48] LEE M, LIANG G, HOLLAND SI, O'FARRELL C, OSBORNE K, MANEFIELD MJ. Dehalobium species implicated in 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin dechlorination in the contaminated sediments of Sydney Harbour Estuary[J]. Marine Pollution Bulletin, 2022, 179:113690.
    [49] PIMVIRIYAKUL P, WONGNATE T, TINIKUL R, CHAIYEN P. Microbial degradation of halogenated aromatics:molecular mechanisms and enzymatic reactions[J]. Microbial Biotechnology, 2020, 13(1):67-86.
    [50] WANG GL, LI R, LI SP, JIANG JD. A novel hydrolytic dehalogenase for the chlorinated aromatic compound chlorothalonil[J]. Journal of Bacteriology, 2010, 192(11):2737-2745.
    [51] YANG BR, SUN ZQ, WANG LP, LI ZX, DING C. Kinetic analysis and degradation pathway for m-dichlorobenzene removal by Brevibacillus agri DH-1 and its performance in a biotrickling filter[J]. Bioresource Technology, 2017, 231:19-25.
    [52] KURT Z, SHIN K, SPAIN JC. Biodegradation of chlorobenzene and nitrobenzene at interfaces between sediment and water[J]. Environmental Science & Technology, 2012, 46(21):11829-11835.
    [53] ARJOON A, OLANIRAN AO, PILLAY B. Enhanced 1, 2-dichloroethane degradation in heavy metal co-contaminated wastewater undergoing biostimulation and bioaugmentation[J]. Chemosphere, 2013, 93(9):1826-1834.
    [54] ARMIENTO G, CAPRIOLI R, CERBONE A, CHIAVARINI S, CROVATO C, DE CASSAN M, DE ROSA L, MONTEREALI MR, NARDI E, NARDI L, PEZZA M, PROPOSITO M, RIMAURO J, SALERNO A, SALLUZZO A, SPAZIANI F, ZAZA F. Current status of coastal sediments contamination in the former industrial area of Bagnoli-Coroglio (Naples, Italy)[J]. Chemistry and Ecology, 2020, 36(6):579-597.
    [55] LEE CL, SONG HJ, WANCHING M. Distribution of chlorobenzenes and hexachlorobutadiene in surficial sediments of Kaohsiung Coast, Taiwan[J]. Journal of Hunan College of Finance and Economics, 1999, 108(5):47-52.
    [56] SANDRIN TR, MAIER RM. Impact of metals on the biodegradation of organic pollutants[J]. Environmental Health Perspectives, 2003, 111(8):1093-1101.
    [57] 赵天涛, 高艳辉, 刘毫, 张磊, 尹镝宁, 陈静, 张云茹, 韩斌. 一种耐高浓度苯酚、重金属和耐低温红球菌分离方法[P]. 中国:CN2019111068376.3. 2020.01.10. ZHAO TT, GAO YH, LIU H, ZHANG L, YIN DN, CHEN J, ZHANG YR, HAN B. A method for isolating red cocci bacteria that are resistant to high concentrations of phenol and heavy metals, and can tolerate low temperatures[P]. China:CN2019111068376.3. 2020.01.10(in Chinese).
    [58] 赵天涛, 郭江枫, 邢志林, 王永琼, 曹昆, 刘毫. 可降解氯苯的粘质沙雷氏菌及其应用[P]. 中国:ZL201911162719.4. 2021.03.02. ZHAO TT, GUO JF, XING ZL, WANG YQ, CAO K, LIU H. Degradative bacterium Sphingobium sp. strain for chlorobenzene and its application[P]. China:ZL201911162719.4. 2021.03.02(in Chinese).
    [59] 赵天涛, 谭楷, 刘厚权, 邢志林, 杨旭. 可降解氯代烯烃的贪铜菌及其应用[P]. 中国:ZL201510225361.0. 2017.12.19. ZHAO TT, TAN K, LIU HQ, XING ZL, YNG X. Copper-accumulating bacteria for degrading biodegradable chlorinated alkenes and their applications[P]. China:ZL201510225361.0. 2017.12.19(in Chinese).
    [60] SANDRIN TR, MAIER RM. Effect of pH on cadmium toxicity, speciation, and accumulation during naphthalene biodegradation[J]. Environmental Toxicology and Chemistry, 2002, 21(10):2075-2079.
    [61] VAN ZWIETEN L, AYRES MR, MORRIS SG. Influence of arsenic co-contamination on DDT breakdown and microbial activity[J]. Environmental Pollution, 2003, 124(2):331-339.
    [62] SAID WA, LEWIS DL. Quantitative assessment of the effects of metals on microbial degradation of organic chemicals[J]. Applied and Environmental Microbiology, 1991, 57(5):1498-1503.
    [63] SPRINGAEL D, DIELS L, HOOYBERGHS L, KREPS S, MERGEAY M. Construction and characterization of heavy metal-resistant haloaromatic-degrading Alcaligenes eutrophus strains[J]. Applied and Environmental Microbiology, 1993, 59(1):334-339.
    [64] BIRCH L, BRANDL H. A rapid method for the determination of metal toxicity to the biodegradation of water insoluble polymers[J]. Fresenius' Journal of Analytical Chemistry, 1996, 354(5):760-762.
    [65] BENKA-COKER MO, EKUNDAYO JA. Effects of heavy metals on growth of species of Micrococcus and Pseudomonas in a crude oil/mineral salts medium[J]. Bioresource Technology, 1998, 66(3):241-245.
    [66] NAKAMURA Y, SAWADA T. Biodegradation of phenol in the presence of heavy metals[J]. Journal of Chemical Technology & Biotechnology, 2000, 75(2):137-142.
    [67] ROANE TM, JOSEPHSON KL, PEPPER IL. Dual-bioaugmentation strategy to enhance remediation of cocontaminated soil[J]. Applied and Environmental Microbiology, 2001, 67(7):3208-3215.
    [68] MASLIN P, MAIER RM. Rhamnolipid-enhanced mineralization of phenanthrene in organic-metal co-contaminated soils[J]. Bioremediation Journal, 2000, 4(4):295-308.
    [69] AMOR L, KENNES C, VEIGA MC. Kinetics of inhibition in the biodegradation of monoaromatic hydrocarbons in presence of heavy metals[J]. Bioresource Technology, 2001, 78(2):181-185.
    [70] OLANIRAN AO, BALGOBIND A, KUMAR A, PILLAY B. Treatment additives reduced arsenic and cadmium bioavailability and increased 1,2-dichloroethane biodegradation and microbial enzyme activities in co-contaminated soil[J]. Journal of Soils and Sediments, 2017, 17(8):2019-2029.
    [71] KUO C, GENTHNER B. Effect of added heavy metal ions on biotransformation and biodegradation of 2-chlorophenol and 3-chlorobenzoate in anaerobic bacterial consortia[J]. Applied and Environmental Microbiology, 1996, 62(7):2317-2323.
    [72] KONG IC. Metal toxicity on the dechlorination of monochlorophenols in fresh and acclimated anaerobic sediment slurries[J]. Water Science and Technology, 1998, 38(7).
    [73] PARDUE JH, KONGARA S, JONES JW. Effect of cadmium on reductive dechlorination of trichloroaniline[J]. Environmental Toxicology and Chemistry, 1996, 15(7):1083-1088.
    [74] ROBERTS DJ, VENKATARAMAN N, PENDHARKAR S. The effect of metals on biological remediation of munitions-contaminated soil[J]. Environmental Engineering Science, 1998, 15(4):265-277.
    [75] JIN PK, BHATTACHARYA SK. Anaerobic removal of pentachlorophenol in presence of zinc[J]. Journal of Environmental Engineering, 1996, 122(7):590-598.
    [76] HOFFMAN DR, OKON JL, SANDRIN TR. Medium composition affects the degree and pattern of cadmium inhibition of naphthalene biodegradation[J]. Chemosphere, 2005, 59(7):919-927.
    [77] KAPOOR V, LI X, ELK M, CHANDRAN K, IMPELLITTERI CA, SANTO DOMINGO JW. Impact of heavy metals on transcriptional and physiological activity of nitrifying bacteria[J]. Environmental Science & Technology, 2015, 49(22):13454-13462.
    [78] XU WH, DUAN GF, LIU YG, ZENG GM, LI X, LIANG J, ZHANG W. Simultaneous removal of hexavalent chromium and o-dichlorobenzene by isolated Serratia marcescens ZD-9[J]. Biodegradation, 2018, 29(6):605-616.
    [79] ZHOU S, WEI CH, LIAO CD, WU HZ. Damage to DNA of effective microorganisms by heavy metals:impact on wastewater treatment[J]. Journal of Environmental Sciences, 2008, 20(12):1514-1518.
    [80] XING ZL, ZHAO TT, ZHANG LJ, GAO YH, LIU S, YANG X. Effects of copper on expression of methane monooxygenases, trichloroethylene degradation, and community structure in methanotrophic consortia[J]. Engineering in Life Sciences, 2018, 18(4):236-243.
    [81] KAPOOR V, ELK M, LI X, IMPELLITTERI CA, SANTO DOMINGO JW. Effects of Cr(III) and Cr(VI) on nitrification inhibition as determined by SOUR, function-specific gene expression and 16S rRNA sequence analysis of wastewater nitrifying enrichments[J]. Chemosphere, 2016, 147:361-367.
    [82] FENG M, LI HX, YOU SH, ZHANG J, LIN H, WANG MQ, ZHOU JH. Effect of hexavalent chromium on the biodegradation of tetrabromobisphenol A (TBBPA) by Pycnoporus sanguineus[J]. Chemosphere, 2019, 235:995-1006.
    [83] BELYAEVA ON, HAYNES RJ, BIRUKOVA OA. Barley yield and soil microbial and enzyme activities as affected by contamination of two soils with lead, zinc or copper[J]. Biology and Fertility of Soils, 2005, 41(2):85-94.
    [84] VIG K, MEGHARAJ M, SETHUNATHAN N, NAIDU R. Bioavailability and toxicity of cadmium to microorganisms and their activities in soil:a review[J]. Advances in Environmental Research, 2003, 8(1):121-135.
    [85] LU QH, ZOU XQ, LIU JT, LIANG ZW, SHIM H, QIU RL, WANG SQ. Inhibitory effects of metal ions on reductive dechlorination of polychlorinated biphenyls and perchloroethene in distinct organohalide-respiring bacteria[J]. Environment International, 2020, 135:105373.
    [86] DJOHAN D, YU QM, CONNELL DW. Integrated assessment of bioconcentration, toxicity, and hazards of chlorobenzenes in the aquatic environment[J]. Archives of Environmental Contamination and Toxicology, 2020, 78(2):216-229.
    [87] RODRÍGUEZ A, CASTREJÓN-GODÍNEZ ML, SALAZAR-BUSTAMANTE E, GAMA-MARTÍNEZ Y, SÁNCHEZ-SALINAS E, MUSSALI-GALANTE P, TOVAR-SÁNCHEZ E, LAURA ORTIZ-HERNÁNDEZ M. Omics approaches to pesticide biodegradation[J]. Current Microbiology, 2020, 77(4):545-563.
    [88] CHENG Y, ZANG HL, WANG HL, LI DP, LI CY. Global transcriptomic analysis of Rhodococcus erythropolis D310-1 in responding to chlorimuron-ethyl[J]. Ecotoxicology and Environmental Safety, 2018, 157:111-120.
    [89] LIU SS, GUO CL, DANG Z, LIANG XJ. Comparative proteomics reveal the mechanism of Tween80 enhanced phenanthrene biodegradation by Sphingomonas sp. GY2B[J]. Ecotoxicology and Environmental Safety, 2017, 137:256-264.
    [90] 李晓曼, 李青青, 杨洁, 黄沈发, 张施阳, 吉敏. 上海市典型工业用地土壤和地下水重金属复合污染特征及生态风险评价[J]. 环境科学, 2022, 43(12):5687-5697. LI XM, LI QQ, YANG J, HUANG SF, ZHANG SY, JI M. Compound pollution characteristics and ecological risk assessment of heavy metals in soil and groundwater of typical industrial lands in Shanghai[J]. Environmental Science, 2022, 43(12):5687-5697(in Chinese).
    [91] 曹文琪. 基于神经网络及智能算法的土壤重金属含量预测方法研究[D]. 武汉:武汉轻工大学硕士学位论文, 2021. CAO WQ. Study on prediction method of soil heavy metal content based on neural network and intelligent algorithm[D]. Wuhan:Master's Thesis of Wuhan Polytechnic University, 2021(in Chinese).
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

苟芳,陈灏,邢志林,赵天涛. 典型重金属对氯苯类有机物生物转化影响及分子机制研究进展[J]. 微生物学报, 2023, 63(10): 3727-3745

复制
分享
文章指标
  • 点击次数:294
  • 下载次数: 707
  • HTML阅读次数: 551
  • 引用次数: 0
历史
  • 收稿日期:2023-02-19
  • 最后修改日期:2023-06-01
  • 在线发布日期: 2023-10-09
  • 出版日期: 2023-10-04
文章二维码