无菌动物及其在微生物与宿主互作机制研究中的应用
作者:
基金项目:

国家重点研发计划(2021YFF0702900);中国医学科学院医学与健康科技创新工程计划(2021-I2M-1-039,2021-I2M-1-034);农业农村部农业微生物资源收集与保藏重点实验室开放基金(KLMRCP2021-09)


Application of germ-free animals in the research on the mechanisms of microorganism-host interactions
Author:
  • SHI Weixiong

    SHI Weixiong

    NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Beijing 100021, China;Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Chinese Academy of Medical Sciences, Beijing 100021, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Xue

    LI Xue

    NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Beijing 100021, China;Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Chinese Academy of Medical Sciences, Beijing 100021, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHU Hua

    ZHU Hua

    NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Beijing 100021, China;Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Chinese Academy of Medical Sciences, Beijing 100021, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • SU Lei

    SU Lei

    NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Beijing 100021, China;Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Chinese Academy of Medical Sciences, Beijing 100021, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • QIN Chuan

    QIN Chuan

    NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Beijing 100021, China;Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Chinese Academy of Medical Sciences, Beijing 100021, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [58]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    无菌动物是指通过现代技术手段在其体内外的任何部位均检测不出细菌、真菌、放线菌、支原体、衣原体、螺旋体、立克次氏体、病毒、原生动物和寄生虫的动物。无菌动物因其不携带任何微生物,可转化为携带特定微生物的动物,同时因其免疫系统处于休眠状态,对微生物感染异常敏感,可建立多种悉生动物模型,用于特定微生物感染实验和致病机制研究。此外,无菌动物作为关键工具,是研究菌群与疾病关系的核心,在微生物与宿主健康、疾病和感染机制研究过程中,起着不可替代的作用。本文将对无菌动物及其在微生物与宿主互作机制研究中的应用进行简要综述。

    Abstract:

    Germ-free animals refer to the animals in which bacteria, fungi, actinomycetes, mycoplasma, chlamydia, spirochetes, rickettsia, viruses, protozoa, and parasites cannot be detected in any part of the body and in vitro by modern technologies. Since germ-free animals do not carry any microorganism, they can be modeled into the animals carrying specific microorganisms. Because of the dormant immune system, germ-free animals are extremely sensitive to microbial infections. A variety of gnotobiotic animal models can be established for specific microbial infection experiments and pathogenic mechanism research. As a key tool, germ-free animals are pivotal in studying the relationship between microbiome and diseases and play an irreplaceable role in the research on the relationship between microbiome and host health and the mechnisms of infections. We briefly introduce germ-free animals and review the applications of germ-free animals in the research on the mechanisms of host-microorganism interactions.

    参考文献
    [1] QIN JJ, LI RQ, RAES J, ARUMUGAM M, BURGDORF KS, MANICHANH C, NIELSEN T, PONS N, LEVENEZ F, YAMADA T, MENDE DR, LI JH, XU JM, LI SC, LI DF, CAO JJ, WANG B, LIANG HQ, ZHENG HS, XIE YL, et al. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature, 2010, 464(7285):59-65.
    [2] de VOS WM, TILG H, Van HUL M, CANI PD. Gut microbiome and health:mechanistic insights[J]. Gut, 2022, 71(5):1020-1032.
    [3] GIBSON GR, ROBERFROID MB. Dietary modulation of the human colonic microbiota:introducing the concept of prebiotics[J]. The Journal of Nutrition, 1995, 125(6):1401-1412.
    [4] GÓRALCZYK-BIŃKOWSKA A, SZMAJDA-KRYGIER D, KOZŁOWSKA E. The microbiota-gut-brain axis in psychiatric disorders[J]. International Journal of Molecular Sciences, 2022, 23(19):11245.
    [5] HILLESTAD EMR, van der MEEREN A, NAGARAJA BH, BJØRSVIK BR, HALEEM N, BENITEZ-PAEZ A, SANZ Y, HAUSKEN T, LIED GA, LUNDERVOLD A, BERENTSEN B. Gut bless you:the microbiota-gut-brain axis in irritable bowel syndrome[J]. World Journal of Gastroenterology, 2022, 28(4):412-431.
    [6] MARTÍN-MATEOS R, ALBILLOS A. The role of the gut-liver axis in metabolic dysfunction-associated fatty liver disease[J]. Frontiers in Immunology, 2021, 12:660179.
    [7] ALBILLOS A, de GOTTARDI A, RESCIGNO M. The gut-liver axis in liver disease:Pathophysiological basis for therapy[J]. Journal of Hepatology, 2020, 72(3):558-577.
    [8] 朱华, 刘小海, 李卓, 郭亚茜, 杜晓鹏, 苏磊, 李永宁, 秦川. 建立阿尔茨海默症人源肠道菌群动物模型[J]. 中国实验动物学报, 2021, 29(1):55-62. ZHU H, LIU XH, LI Z, GUO YX, DU XP, SU L, LI YN, QIN C. Establishment of a human flora-associated mouse model correlated with Alzheimer's disease[J]. Acta Laboratorium Animalis Scientia Sinica, 2021, 29(1):55-62(in Chinese).
    [9] 朱华, 郭亚茜, 杜晓鹏, 李卓, 苏磊, 秦川. 基于LC-MS的冠心病人源菌群小鼠代谢组学研究[J]. 中国实验动物学报, 2020, 28(3):323-329. ZHU H, GUO YX, DU XP, LI Z, SU L, QIN C. Metabolic analysis of human flora-associated mice with coronary heart disease using liquid chromatography-mass spectrometry[J]. Acta Laboratorium Animalis Scientia Sinica, 2020, 28(3):323-329(in Chinese).
    [10] 朱华, 李卓, 苏磊, 郭亚茜, 杜晓鹏, 袁建松, 秦川. 冠心病人源肠道菌群小鼠模型的建立及评价[J]. 中国实验动物学报, 2019, 27(6):716-724. ZHU H, LI Z, SU L, GUO YX, DU XP, YUAN JS, QIN C. Establishment and evaluation of a mouse model of human gut microbiota transplanted from patients of coronary heart disease[J]. Acta Laboratorium Animalis Scientia Sinica, 2019, 27(6):716-724(in Chinese).
    [11] FAITH JJ, REY FE, O'DONNELL D, KARLSSON M, McNULTY NP, KALLSTROM G, GOODMAN AL, GORDON JI. Creating and characterizing communities of human gut microbes in gnotobiotic mice[J]. The ISME Journal, 2010, 4(9):1094-1098.
    [12] WANG M, DONOVAN SM. Human microbiota-associated swine:current progress and future opportunities[J]. ILAR Journal, 2015, 56(1):63-73.
    [13] MARTÍN R, BERMÚDEZ-HUMARÁN LG, LANGELLA P. Gnotobiotic rodents:an in vivo model for the study of microbe-microbe interactions[J]. Frontiers in Microbiology, 2016, 7:409.
    [14] YI P, LI LJ. The germfree murine animal:an important animal model for research on the relationship between gut microbiota and the host[J]. Veterinary Microbiology, 2012, 157(1/2):1-7.
    [15] SMITH K, MCCOY KD, MACPHERSON AJ. Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota[J]. Seminars in Immunology, 2007, 19(2):59-69.
    [16] BHATTARAI Y, KASHYAP PC. Germ-free mice model for studying host-microbial interactions[J]. Methods in Molecular Biology (Clifton, N.J.), 2016, 1438:123-135.
    [17] EBERL C, RING D, MÜNCH PC, BEUTLER M, BASIC M, SLACK EC, SCHWARZER M, SRUTKOVA D, LANGE AN, FRICK JS, BLEICH A, STECHER B. Reproducible colonization of germ-free mice with the oligo-mouse-microbiota in different animal facilities[J]. Frontiers in Microbiology, 2020, 10:2999.
    [18] QV L, YANG ZG, YAO MF, MAO SB, LI YJ, ZHANG J, LI LJ. Methods for establishment and maintenance of germ-free rat models[J]. Frontiers in Microbiology, 2020, 11:1148.
    [19] JIA PP, JUNAID M, WEN PP, YANG YF, LI WG, YANG XG, PEI DS. Role of germ-free animal models in understanding interactions of gut microbiota to host and environmental health:a special reference to zebrafish[J]. Environmental Pollution, 2021, 279:116925.
    [20] NANCE FC, CAIN JL. Studies of hemorrhagic pancreatitis in germ-free dogs[J]. Gastroenterology, 1968, 55(3):368-374.
    [21] FURUSE M, OKUMURA JI. Nutritional and physiological characteristics in germ-free chickens[J]. Comparative Biochemistry and Physiology Part A:Physiology, 1994, 109(3):547-556.
    [22] HARDING JCS, ELLIS JA, MCLNTOSH KA, KRAKOWKA S. Dual heterologous porcine circovirus genogroup 2a/2b infection induces severe disease in germ-free pigs[J]. Veterinary Microbiology, 2010, 145(3/4):209-219.
    [23] NICKLAS W, BANEUX P, BOOT R, DECELLE T, DEENY AA, FUMANELLI M, ILLGEN-WILCKE B. Recommendations for the health monitoring of rodent and rabbit colonies in breeding and experimental units[J]. Laboratory Animals, 2002, 36(1):20-42.
    [24] AL-ASMAKH M, ZADJALI F. Use of germ-free animal models in microbiota-related research[J]. Journal of Microbiology and Biotechnology, 2015, 25(10):1583-1588.
    [25] QI HB, WEI JM, GAO YH, YANG YZ, LI YY, ZHU H, SU L, SU XM, ZHANG Y, YANG RC. Reg4 and complement factor D prevent the overgrowth of E. coli in the mouse gut[J]. Communications Biology, 2020, 3:483.
    [26] SCHÉLE E, GRAHNEMO L, ANESTEN F, HALLÉN A, BÄCKHED F, JANSSON JO. The gut microbiota reduces leptin sensitivity and the expression of the obesity-suppressing neuropeptides proglucagon (gcg) and brain-derived neurotrophic factor (bdnf) in the central nervous system[J]. Endocrinology, 2013, 154(10):3643-3651.
    [27] TURTON MD, O'SHEA D, GUNN I, BEAK SA, EDWARDS CMB, MEERAN K, CHOI SJ, TAYLOR GM, HEATH MM, LAMBERT PD, WILDING JPH, SMITH DM, GHATEI MA, HERBERT J, BLOOM SR. A role for glucagon-like peptide-1 in the central regulation of feeding[J]. Nature, 1996, 379(6560):69-72.
    [28] HANSEN AK, HANSEN CHF, KRYCH L, NIELSEN DS. Impact of the gut microbiota on rodent models of human disease[J]. World Journal of Gastroenterology, 2014, 20(47):17727-17736.
    [29] FICARA M, PIETRELLA E, SPADA C, DELLA CASA MUTTINI E, LUCACCIONI L, IUGHETTI L, BERARDI A. Changes of intestinal microbiota in early life[J]. The Journal of Maternal-Fetal and Neonatal Medicine:the Official Journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstetricians, 2020, 33(6):1036-1043.
    [30] TEIXEIRA TFS, SOUZA NCS, CHIARELLO PG, FRANCESCHINI SCC, BRESSAN J, FERREIRA CLLF, DO CARMO G PELUZIO M. Intestinal permeability parameters in obese patients are correlated with metabolic syndrome risk factors[J]. Clinical Nutrition, 2012, 31(5):735-740.
    [31] WOSTMANN BS, LARKIN C, MORIARTY A, BRUCKNER-KARDOSS E. Dietary intake, energy metabolism, and excretory losses of adult male germfree Wistar rats[J]. Laboratory Animal Science, 1983, 33(1):46-50.
    [32] BÄCKHED F, DING H, WANG T, HOOPER LV, KOH GY, NAGY A, SEMENKOVICH CF, GORDON JI. The gut microbiota as an environmental factor that regulates fat storage[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(44):15718-15723.
    [33] FLEISSNER CK, HUEBEL N, ABD EL-BARY MM, LOH G, KLAUS S, BLAUT M. Absence of intestinal microbiota does not protect mice from diet-induced obesity[J]. British Journal of Nutrition, 2010, 104(6):919-929.
    [34] JACOUTON E, MACH N, CADIOU J, LAPAQUE N, CLÉMENT K, DORÉ J, van HYLCKAMA VLIEG JET, SMOKVINA T, BLOTTIÈRE HM. Lactobacillus rhamnosus CNCMI-4317 modulates fiaf/Angptl4 in intestinal epithelial cells and circulating level in mice[J]. PLoS One, 2015, 10(10):e0138880.
    [35] AOKI R, ONUKI M, HATTORI K, ITO M, YAMADA T, KAMIKADO K, KIM YG, NAKAMOTO N, KIMURA I, CLARKE JM, KANAI T, HASE K. Commensal microbe-derived acetate suppresses NAFLD/NASH development via hepatic FFAR2 signalling in mice[J]. Microbiome, 2021, 9(1):188.
    [36] MARTINS F, CAMPOS DHS, PAGAN LU, MARTINEZ PF, OKOSHI K, OKOSHI MP, PADOVANI CR, de SOUZA AS, CICOGNA AC, de OLIVEIRA SA. High-fat diet promotes cardiac remodeling in an experimental model of obesity[J]. Arquivos Brasileiros De Cardiologia, 2015,105(5):479-486.
    [37] KHAN N, MUKHTAR H. Tea polyphenols for health promotion[J]. Life Sciences, 2007, 81(7):519-533.
    [38] CHENG J, PALVA AM, de VOS WM, SATOKARI R. Contribution of the intestinal microbiota to human health:from birth to 100 years of age[M]//Between Pathogenicity and Commensalism. Berlin, Heidelberg:Springer Berlin Heidelberg, 2011:323-346.
    [39] THEVARANJAN N, PUCHTA A, SCHULZ C, NAIDOO A, SZAMOSI JC, VERSCHOOR CP, LOUKOV D, SCHENCK LP, JURY J, FOLEY KP, SCHERTZER JD, LARCHÉ MJ, DAVIDSON DJ, VERDÚ EF, SURETTE MG, BOWDISH DME. Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction[J]. Cell Host & Microbe, 2017, 21(4):455-466.e4.
    [40] PENG X, CHENG L, YOU Y, TANG CW, REN B, LI YQ, XU X, ZHOU XD. Oral microbiota in human systematic diseases[J]. International Journal of Oral Science, 2022, 14:14.
    [41] BAVANI NG, HAJHASHEMY Z, SANEEI P, KESHTELI AH, ESMAILLZADEH A, ADIBI P. The relationship between meal regularity with irritable bowel syndrome (IBS) in adults[J]. European Journal of Clinical Nutrition, 2022, 76(9):1315-1322.
    [42] CELEBI SOZENER Z, OZDEL OZTURK B, CERCI P, TURK M, GORGULU AKIN B, AKDIS M, ALTINER S, OZBEY U, OGULUR I, MITAMURA Y, YILMAZ I, NADEAU K, OZDEMIR C, MUNGAN D, AKDIS CA. Epithelial barrier hypothesis:effect of the external exposome on the microbiome and epithelial barriers in allergic disease[J]. Allergy, 2022, 77(5):1418-1449.
    [43] UWISHEMA O, MAHMOUD A, SUN J, CORREIA IFS, BEJJANI N, ALWAN M, NICHOLAS A, OLUYEMISI A, DOST B. Is Alzheimer's disease an infectious neurological disease? A review of the literature[J]. Brain and Behavior, 2022, 12(8):e2728.
    [44] PATTERSON E, RYAN PM, CRYAN JF, DINAN TG, ROSS RP, FITZGERALD GF, STANTON C. Gut microbiota, obesity and diabetes[J]. Postgraduate Medical Journal, 2016, 92(1087):286-300.
    [45] JÄRBRINK-SEHGAL E, ANDREASSON A. The gut microbiota and mental health in adults[J]. Current Opinion in Neurobiology, 2020, 62:102-114.
    [46] SUN PL, ZHU H, LI X, SHI WX, GUO YX, DU XP, ZHANG L, SU L, QIN C. Comparative metagenomics and metabolomes reveals abnormal metabolism activity is associated with gut microbiota in alzheimer's disease mice[J]. International Journal of Molecular Sciences, 2022, 23(19):11560.
    [47] O'LEARY OF, CRYAN JF. A ventral view on antidepressant action:roles for adult hippocampal neurogenesis along the dorsoventral axis[J]. Trends in Pharmacological Sciences, 2014, 35(12):675-687.
    [48] LAKHAN SE, CARO M, HADZIMICHALIS N. NMDA receptor activity in neuropsychiatric disorders[J]. Frontiers in Psychiatry, 2013, 4:52.
    [49] DENG YY, ZHOU MF, WANG JF, YAO JX, YU J, LIU WW, WU LL, WANG J, GAO R. Involvement of the microbiota-gut-brain axis in chronic restraint stress:disturbances of the kynurenine metabolic pathway in both the gut and brain[J]. Gut Microbes, 2021, 13(1):1-16.
    [50] KIM J, KIM DW, LEE A, MASON M, JOUROUKHIN Y, WOO H, YOLKEN RH, PLETNIKOV MV. Homeostatic regulation of neuronal excitability by probiotics in male germ-free mice[J]. Journal of Neuroscience Research, 2022, 100(2):444-460.
    [51] HSIAO EY, McBRIDE SW, HSIEN S, SHARON G, HYDE ER, MCCUE T, CODELLI JA, CHOW J, REISMAN SE, PETROSINO JF, PATTERSON PH, MAZMANIAN SK. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders[J]. Cell, 2013, 155(7):1451-1463.
    [52] 朱华, 郭亚茜, 杜晓鹏, 李卓, 秦川. 无菌APPswe/PS1ΔE9双转基因小鼠模型建立及脑内斑块变化初步观察[J]. 中国实验动物学报, 2019, 27(4):521-526. ZHU H, GUO YX, DU XP, LI Z, QIN C. Establishment of germ free APPswe/PS1ΔE9 transgenic mice and changes of amyloid plaques in the brain[J]. Acta Laboratorium Animalis Scientia Sinica, 2019, 27(4):521-526(in Chinese).
    [53] ERNY D, LENA HRABĚ de ANGELIS A, JAITIN D, WIEGHOFER P, STASZEWSKI O, DAVID E, KEREN-SHAUL H, MAHLAKOIV T, JAKOBSHAGEN K, BUCH T, SCHWIERZECK V, UTERMÖHLEN O, CHUN E, GARRETT WS, MCCOY KD, DIEFENBACH A, STAEHELI P, STECHER B, AMIT I, PRINZ M. Host microbiota constantly control maturation and function of microglia in the CNS[J]. Nature Neuroscience, 2015, 18(7):965-977.
    [54] KHOSRAVI Y, SEOW SW, AMOYO AA, CHIOW KH, TAN TL, WONG WY, POH QH, DOLI SENTOSA IM, BUNTE RM, PETTERSSON S, LOKE MF, VADIVELU J. Helicobacter pylori infection can affect energy modulating hormones and body weight in germ free mice[J]. Scientific Reports, 2015, 5:8731.
    [55] ACURCIO LB, SANDES SHC, BASTOS RW, SANT'ANNA FM, PEDROSO SHSP, REIS DC, NUNES ÁC, CASSALI GD, SOUZA MR, NICOLI JR. Milk fermented by Lactobacillus species from Brazilian artisanal cheese protect germ-free-mice against Salmonella Typhimurium infection[J]. Beneficial Microbes, 2017, 8(4):579-588.
    [56] PARK YJ, KANG BH, KIM HJ, OH JE, LEE HK. A microbiota-dependent subset of skin macrophages protects against cutaneous bacterial infection[J]. Frontiers in Immunology, 2022, 13:799598.
    [57] PEÑA-GIL N, SANTISO-BELLÓN C, GOZALBO-ROVIRA R, BUESA J, MONEDERO V, RODRÍGUEZ-DÍAZ J. The role of host glycobiology and gut microbiota in Rotavirus and Norovirus infection, an update[J]. International Journal of Molecular Sciences, 2021, 22(24):13473.
    [58] YU P, GAO ZF, ZONG YY, BAO LL, XU LL, DENG W, LI FD, LV Q, GAO ZC, XU YF, YAO YF, QIN C. Histopathological features and distribution of EV71 antigens and SCARB2 in human fatal cases and a mouse model of enterovirus 71 infection[J]. Virus Research, 2014, 189:121-132.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

石伟雄,李雪,朱华,苏磊,秦川. 无菌动物及其在微生物与宿主互作机制研究中的应用[J]. 微生物学报, 2023, 63(10): 3773-3783

复制
相关视频

分享
文章指标
  • 点击次数:450
  • 下载次数: 812
  • HTML阅读次数: 708
  • 引用次数: 0
历史
  • 收稿日期:2023-03-14
  • 最后修改日期:2023-06-06
  • 在线发布日期: 2023-10-09
  • 出版日期: 2023-10-04
文章二维码