减磷配施有机肥对丛枝菌根真菌群落的复杂度和稳定性的短期效应
作者:
基金项目:

国家自然科学基金(32272800,32002126);中央高校基本科研业务费(SWU-KR22010);国家玉米产业体系(CARS-02)


Short-term effects of application of reduced phosphorus fertilizer combined with manure on the community complexity and stability of arbuscular mycorrhizal fungi
Author:
  • XIE Xiaoyu

    XIE Xiaoyu

    Chongqing Key Laboratory of Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Southwest University, Chongqing 400715, China;Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400715, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Shunli

    LIU Shunli

    Chongqing Key Laboratory of Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Southwest University, Chongqing 400715, China;Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400715, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHEN Yuanxue

    CHEN Yuanxue

    College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHEN Xinping

    CHEN Xinping

    Chongqing Key Laboratory of Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Southwest University, Chongqing 400715, China;Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400715, China;Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LANG Ming

    LANG Ming

    Chongqing Key Laboratory of Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Southwest University, Chongqing 400715, China;Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400715, China;Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [51]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】探究减磷配施有机肥条件下土壤中丛枝菌根(arbuscular mycorrhiza,AM)真菌群落特性、网络复杂性及群落的稳定性之间的关系,揭示有机肥替代背景下,土壤理化性质与AM真菌的群落结构对网络特征和群落稳定性的短期效应。【方法】在2012年开始的无机磷肥长期定位试验的基础上,于2018年实施减磷配施有机肥裂区试验,共设6个处理:施无机磷0、75、150 kg/hm2;无机磷肥施用量减少30%,即0、52.5、105 kg/hm2,并配施有机肥(猪粪)3 187 kg/hm2,每个处理重复3次。通过高通量测序和生物信息学分析,探究减磷配施有机肥对土壤中AM真菌群落的网络特征及稳定性的短期效应。【结果】相比于无机磷施用,减磷配施有机肥整体上降低了AM真菌群落的α多样性,各处理中的AM真菌优势类群均为球囊霉属(Glomus)和类球囊霉属(Paraglomus)。网络的平均度、平均加权度在无机磷肥及减磷配施有机肥处理中均在适量施磷下达到最大值,且无机磷肥处理大于减磷配施有机肥处理;网络负相关连接线数在无机磷肥处理中随施磷量增加而增加,而在减磷配施有机肥处理中随施磷量增加而减少。减磷配施有机肥通过抑制AM真菌群落间正相互作用来提高负正凝聚力比值,从而促进群落稳定性。相比于AM真菌的指示物种(indicator species)和关键类群(keystone taxa),优势类群(dominant taxa)与AM真菌群落的稳定性密切相关。【结论】在酸性紫色土中,短期减磷配施有机肥通过改变土壤pH、速效磷和有机质,调控AM真菌群落的α多样性和优势类群,进而影响AM真菌群落的网络复杂度和群落稳定性。

    Abstract:

    [Objective] To investigate the community characteristics, network complexity, and community stability of arbuscular mycorrhizal fungi (AMF) in the soil applied with reduced phosphorus (P) fertilizer combined with manure, and reveal the short-term effects of soil properties on the network characteristics and community stability of AMF community in the context of manure substitution for chemical fertilizers. [Methods] On the basis of the long-term inorganic P fertilizer application experiment started in 2012, a split plot experiment was designed with the application of reduced P fertilizer combined with manure and started in 2018. Six treatments were designed:inorganic P supply at 0, 75, and 150 kg/hm2 and 30% reduction in inorganic P fertilizer (i.e., 0, 52.5, and 105 kg/hm2) combined with manure at 3 187 kg/hm2, with three replicates for each treatment. High-throughput sequencing and bioinformatics analysis were employed to explore the short-term effects of application of reduced P fertilizer+manure on the network characteristics and stability of the AMF community in soil. [Results] The alpha diversity of AMF decreased in the case of application of reduced P fertilizer+manure compared with that in the case of inorganic P fertilization. Glomus and Paraglomus were the dominant taxa of AMF in each treatment. The average degree and average weighted degree of the network reached the maximums under the appropriate amount of P fertilizer, and were higher in inorganic P treatments than in reduced P fertilizer+manure treatments. The number of negative correlation links in the network increased with the increase in P application in inorganic P treatments and decreased with the increase in P application in reduced P fertilizer+manure treatments. The application of reduced P fertilizer+manure improved the stability of AMF community by increasing the negative/positive cohesion ratio. Compared with indicator species and keystone taxa, dominant taxa are closely associated with the stability of AMF community. [Conclusion] In acid purple soil, short-term application of reduced P fertilizer+manure regulated the alpha diversity and dominant taxa of AMF by changing soil pH, available P, and soil organic matter, thereby affecting the network complexity and stability of AMF community.

    参考文献
    [1] HUANG J, XU CC, RIDOUTT BG, WANG XC, REN PA. Nitrogen and phosphorus losses and eutrophication potential associated with fertilizer application to cropland in China[J]. Journal of Cleaner Production, 2017, 159:171-179.
    [2] TIAN DS, NIU SL. A global analysis of soil acidification caused by nitrogen addition[J]. Environmental Research Letters, 2015, 10(2):024019.
    [3] ZHOU J, JIANG X, ZHOU BK, ZHAO BS, MA M, GUAN DW, LI J, CHEN SF, CAO FM, SHEN D, QIN J. Thirty four years of nitrogen fertilization decreases fungal diversity and alters fungal community composition in black soil in Northeast China[J]. Soil Biology & Biochemistry, 2016, 95:135-143.
    [4] TIAN SY, ZHU BJ, YIN R, WANG MW, JIANG YJ, ZHANG CZ, LI DM, CHEN XY, KARDOL P, LIU MQ. Organic fertilization promotes crop productivity through changes in soil aggregation[J]. Soil Biology & Biochemistry, 2022, 165:108533.
    [5] FAN KK, DELGADO-BAQUERIZO M, GUO XS, WANG DZ, ZHU YG, CHU HY. Biodiversity of key-stone phylotypes determines crop production in a 4-decade fertilization experiment[J]. The ISME Journal, 2021, 15(2):550-561.
    [6] SONG S, SHU S, LIU L, SHI S, LI MC, ZHANG Z, LI ZZ, LIU L, YUAN Y, ZHANG Z, LIU L, GAO G. Effects of long-term fertilization with different substitution ratios of organic fertilizer on paddy soil[J]. Pedosphere, 2022, 32(4):637-648.
    [7] MA YY, ZHANG HC, WANG DZ, GUO XS, YANG T, XIANG XJ, WALDER F, CHU HY. Differential responses of arbuscular mycorrhizal fungal communities to long-term fertilization in the wheat rhizosphere and root endosphere[J]. Applied and Environmental Microbiology, 2021, 87(17):e0034921.
    [8] LIU J, ZHANG J, LI DM, XU CX, XIANG XJ. Differential responses of arbuscular mycorrhizal fungal communities to mineral and organic fertilization[J]. MicrobiologyOpen, 2020, 9(1):e00920.
    [9] WANG FY, HU JL, LIN XG, QIN SW, WANG JH. Arbuscular mycorrhizal fungal community structure and diversity in response to long-term fertilization:a field case from China[J]. World Journal of Microbiology and Biotechnology, 2011, 27(1):67-74.
    [10] 江尚焘, 栗晗, 彭海英, 梅新兰, 陈廷速, 徐阳春, 董彩霞, 沈其荣. 有机肥替代部分化肥对芒果丛枝菌根真菌群落的影响[J]. 应用生态学报, 2023, 34(2):481-490. JIANG ST, LI H, PENG HY, MEI XL, CHEN TS, XU YC, DONG CX, SHEN QR. Effects of partial substitution of chemical fertilizer with organic fertilizer on arbuscular mycorrhizal fungal community of Mangifera indica[J]. Chinese Journal of Applied Ecology, 2023, 34(2):481-490(in Chinese).
    [11] MA MC, ONGENA M, WANG QF, GUAN DW, CAO FM, JIANG X, LI J. Chronic fertilization of 37 years alters the phylogenetic structure of soil arbuscular mycorrhizal fungi in Chinese Mollisols[J]. AMB Express, 2018, 8(1):57.
    [12] LIU ZH, BAI JF, QIN H, SUN DN, LI MH, HU JL, LIN XG. Application of rice straw and horse manure coameliorated soil arbuscular mycorrhizal fungal community:impacts on structure and diversity in a degraded field in eastern China[J]. Land Degradation & Development, 2021, 32:2595-2605.
    [13] QIN ZF, ZHANG HY, FENG G, CHRISTIE P, ZAHNG JL, LI XL, GAI JP. Soil phosphorus availability modifies the relationship between AM fungal diversity and mycorrhizal benefits to maize in an agricultural soil[J]. Soil Biology & Biochemistry, 2020, 144:107790.
    [14] MA L, ZHANG JB, LI ZQ, XIN XL, GUO ZB, WANG DZ, LI DC, ZHAO BZ. Long-term phosphorus deficiency decreased bacterial-fungal network complexity and efficiency across three soil types in China as revealed by network analysis[J]. Applied Soil Ecology, 2020, 148:103506.
    [15] LI Y, SHEN Q, AN XC, XIE YH, LIU XM, LIAN B. Organomineral fertilizer application enhances Perilla frutescens nutritional quality and rhizosphere microbial community stability in karst mountain soils[J]. Frontiers in Microbiology, 2022, 13:1058067.
    [16] SHI W, ZHAO HY, CHEN Y, WANG JS, HAN B, LI CP, LU JY, ZHANG LM. Organic manure rather than phosphorus fertilization primarily determined asymbiotic nitrogen fixation rate and the stability of diazotrophic community in an upland red soil[J]. Agriculture, Ecosystems & Environment, 2021, 319:107535.
    [17] BANERJEE S, SCHLAEPPI K, van der HEIJDEN MGA. Keystone taxa as drivers of microbiome structure and functioning[J]. Nature Reviews Microbiology, 2018, 16(9):567-576.
    [18] JIAO S, XU YQ, ZHANG J, HAO X, LU YH. Core microbiota in agricultural soils and their potential associations with nutrient cycling[J]. mSystems, 2019, 4(2):e00313-e00318.
    [19] JIAO S, ZHANG BG, ZHANG GZ, CHEN WM, WEI GH. Stochastic community assembly decreases soil fungal richness in arid ecosystems[J]. Molecular Ecology, 2021, 30(17):4338-4348.
    [20] JIAO S, CHEN WM, WEI GH. Core microbiota drive functional stability of soil microbiome in reforestation ecosystems[J]. Global Change Biology, 2022, 28(3):1038-1047.
    [21] OLSEN SR, SOMMERS LE. Phosphorus. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. 2nd ed.[M]. Madison, WI:Agronomy, 1982.
    [22] SAUNDERS WMH, WILLIAMS EG. Observations on the determination of total organic phosphorus in soils[J]. Journal of Soil Science, 1955, 6(2):254-267.
    [23] Tiessen H. Characterization of Available P by Sequential Extraction[M]. Boca Raton:CRC Press, 1993.
    [24] van GEEL M, BUSSCHAERT P, HONNAY O, LIEVENS B. Evaluation of six primer pairs targeting the nuclear rRNA operon for characterization of arbuscular mycorrhizal fungal (AMF) communities using 454 pyrosequencing[J]. Journal of Microbiological Methods, 2014, 106:93-100.
    [25] LUMINI E, ORGIAZZI A, BORRIELLO R, BONFANTE P, BIANCIOTTO V. Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land-use gradient using a pyrosequencing approach[J]. Environmental Microbiology, 2010, 12(8):2165-2179.
    [26] CAPORASO JG, KUCZYNSKI J, STOMBAUGH J, BITTINGER K, BUSHMAN FD, COSTELLO EK, FIERER N, PEÑA AG, GOODRICH JK, GORDON JI, HUTTLEY GA, KELLEY ST, KNIGHTS D, KOENIG JE, LEY RE, LOZUPONE CA, MCDONALD D, MUEGGE BD, PIRRUNG M, REEDER J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 2010, 7(5):335-336.
    [27] MAGOČ T, SALZBERG SL. FLASH:fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011, 27(21):2957-2963.
    [28] TRESEDER KK, ALLEN MF. Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi:a model and field test[J]. The New Phytologist, 2002, 155(3):507-515.
    [29] JOHNSON NC. Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales[J]. The New Phytologist, 2010, 185(3):631-647.
    [30] CAMENZIND T, HEMPEL S, HOMEIER J, HORN S, VELESCU A, WILCKE W, RILLIG MC. Nitrogen and phosphorus additions impact arbuscular mycorrhizal abundance and molecular diversity in a tropical montane forest[J]. Global Change Biology, 2014, 20(12):3646-3659.
    [31] WANG C, WHITE PJ, LI CJ. Colonization and community structure of arbuscular mycorrhizal fungi in maize roots at different depths in the soil profile respond differently to phosphorus inputs on a long-term experimental site[J]. Mycorrhiza, 2017, 27(4):369-381.
    [32] CHEN YL, ZHANG X, YE JS, HAN HY, WAN SQ, CHEN BD. Six-year fertilization modifies the biodiversity of arbuscular mycorrhizal fungi in a temperate steppe in Inner Mongolia[J]. Soil Biology and Biochemistry, 2014, 69:371-381.
    [33] RINNAN R, MICHELSEN A, ERLAND BÅÅ TH, JONASSON S. Fifteen years of climate change manipulations alter soil microbial communities in a subarctic heath ecosystem[J]. Global Change Biology, 2007, 13(1):28-39.
    [34] KONVALINKOVÁ T, PÜSCHEL D, ŘEZÁČOVÁ V, GRYNDLEROVÁ H, JANSA J. Carbon flow from plant to arbuscular mycorrhizal fungi is reduced under phosphorus fertilization[J]. Plant and Soil, 2017, 419(1):319-333.
    [35] JOHNSON NC, WILSON GWT, WILSON JA, MILLER RM, BOWKER MA. Mycorrhizal phenotypes and the law of the minimum[J]. The New Phytologist, 2015, 205(4):1473-1484.
    [36] HIGO M, SATO R, SERIZAWA A, TAKAHASHI Y, GUNJI K, TATEWAKI Y, ISOBE K. Can phosphorus application and cover cropping alter arbuscular mycorrhizal fungal communities and soybean performance after a five-year phosphorus-unfertilized crop rotational system?[J]. PeerJ, 2018, 6:e4606.
    [37] FAGGIOLI VS, CABELLO MN, GRILLI G, VASAR M, COVACEVICH F, OPIK M. Root colonizing and soil borne communities of arbuscular mycorrhizal fungi differ among soybean fields with contrasting historical land use[J]. Agriculture, Ecosystems & Environment, 2019, 269:174-182.
    [38] HONTORIA C, GARCÍA-GONZÁLEZ I, QUEMADA M, ROLDÁN A, ALGUACIL MM. The cover crop determines the AMF community composition in soil and in roots of maize after a ten-year continuous crop rotation[J]. The Science of the Total Environment, 2019, 660:913-922.
    [39] TEDERSOO L, BAHRAM M. Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes[J]. Biological Reviews of the Cambridge Philosophical Society, 2019, 94(5):1857-1880.
    [40] BARBERÁN A, BATES ST, CASAMAYOR EO, FIERER N. Using network analysis to explore co-occurrence patterns in soil microbial communities[J]. The ISME Journal, 2012, 6(2):343-351.
    [41] JIANG YL, ZHANG J, MANUEL DB, OP de BEECK M, SHAHBAZ M, CHEN Y, DENG XP, XU ZL, LI J, LIU ZF. Rotation cropping and organic fertilizer jointly promote soil health and crop production[J]. Journal of Environmental Management, 2022, 315:115190.
    [42] SULEIMAN AK, GONZATTO R, AITA C, LUPATINI M, JACQUES R, KURAMAE E, ANTONIOLLI Z, ROESCH L. Temporal variability of soil microbial communities after application of dicyandiamide-treated swine slurry and mineral fertilizers[J]. Soil Biology & Biochemistry, 2016, 97:71-82.
    [43] LEVINE JM, D'ANTONIO CM. Elton revisited:a review of evidence linking diversity and invasibility[J]. Oikos, 1999, 87(1):15-26.
    [44] LIU HY, HUANG X, TAN WF, DI HJ, XU JM, LI Y. High manure load reduces bacterial diversity and network complexity in a paddy soil under crop rotations[J]. Soil Ecology Letters, 2020, 2(2):104-119.
    [45] HERREN CM, MCMAHON KD. Cohesion:a method for quantifying the connectivity of microbial communities[J]. The ISME Journal, 2017, 11(11):2426-2438.
    [46] HERNANDEZ DJ, DAVID AS, MENGES ES, SEARCY CA, AFKHAMI ME. Environmental stress destabilizes microbial networks[J]. The ISME Journal, 2021, 15(6):1722-1734.
    [47] LEVEAU JHJ, PRESTON GM. Bacterial mycophagy:definition and diagnosis of a unique bacterial-fungal interaction[J]. The New Phytologist, 2008, 177(4):859-876.
    [48] YE L, ZHAO X, BAO EC, LI JS, ZOU ZR, CAO K. Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality[J]. Scientific Reports, 2020, 10:177.
    [49] WU ZX, Li HH, LIU QL, YE CY, YU FX. Application of bio-organic fertilizer, not biochar, in degraded red soil improves soil nutrients and plant growth[J]. Rhizosphere, 2020, 16:100264.
    [50] JOHNSON NC, WILSON GWT, BOWKER MA, WILSON JA, MILLER RM. Resource limitation is a driver of local adaptation in mycorrhizal symbioses[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(5):2093-2098.
    [51] ZHANG MG, SHI ZY, YANG M, LU SC, CAO LB, WANG XG. Molecular diversity and distribution of arbuscular mycorrhizal fungi at different elevations in Mt. Taibai of Qinling Mountain[J]. Frontiers in Microbiology, 2021, 12:609386.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

谢小雨,刘顺莉,陈远学,陈新平,郎明. 减磷配施有机肥对丛枝菌根真菌群落的复杂度和稳定性的短期效应[J]. 微生物学报, 2023, 63(10): 3793-3810

复制
分享
文章指标
  • 点击次数:257
  • 下载次数: 645
  • HTML阅读次数: 614
  • 引用次数: 0
历史
  • 收稿日期:2023-02-12
  • 最后修改日期:2023-04-23
  • 在线发布日期: 2023-10-09
  • 出版日期: 2023-10-04
文章二维码