西藏青稞根际细菌群落结构及多样性
作者:
基金项目:

国家自然科学基金(31960002)


Structure and diversity of the bacterial community in the rhizosphere of highland barley in Xizang
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [53]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】分析西藏不同种植区青稞根际土壤细菌群落结构及其影响因素,揭示特定环境下根际细菌生物标志物,为发掘研究优异根际促生菌及其作用提供参考。【方法】采用16S rRNA基因高通量测序技术和数据统计分析,比较了西藏5个市青稞种植区根际土壤细菌群落组成和结构差异,分析了青稞根际细菌生物标志物及群落结构变化的驱动因素。【结果】通过测序45个根际土壤样品获得10 715个操作分类单元(operational taxonomic units,OTUs),共43门、1 244属、2 783种,其中放线菌门(Actinobacteriota)、变形菌门(Proteobacteria)、绿弯菌门(Chloroflexi)、酸杆菌门(Acidobacteriota)、拟杆菌门(Bacteroidota)、厚壁菌门(Firmicutes)、芽单胞菌门(Gemmatimonadota)、粘球菌门(Myxococcota)和髌骨细菌门(Patescibacteria)为优势菌门,相对丰度占比94.92%-96.56%。五个市的根际细菌群落结构存在明显的差异,组间差异大于组内差异(R=0.226 9,P=0.001),其中放线菌门、绿弯菌门、酸杆菌门、拟杆菌门和髌骨细菌门丰度存在显著性差异(P<0.05)。五个市青稞根际土壤存在潜在生物标志物,拉萨和山南只有3个和6个特有细菌进化支,共现网络更为复杂、OTUs间联系更为紧密。变形菌门、绿弯菌门、放线菌门和酸杆菌门是青稞根际土壤中主要的关键细菌门,内生菌门、Methylomirabilota和蓝细菌分别是林芝市、日喀则市和山南市的特有关键类群。青稞根际细菌群落结构的变化主要与环境因子pH、全钾(total potassium,TK)、速效钾(available potassium,AK)、碳磷比(C:P)和海拔有关,其中TK是影响根际土壤细菌群落最重要的因子(r2=0.621 4,P=0.001)。【结论】西藏青稞根际细菌多样性丰富,5市间存在显著差异,且不同生长区青稞根际具有特有的生物标志物,为进一步研究特有根际细菌在青稞生长和环境适应中的作用,发掘优异根际促生菌提供参考。

    Abstract:

    [Objective] This study aims to analyze the structure and influencing factors of bacterial community in the rhizosphere soil of highland barley in different planting areas in Xizang, reveal the biological markers of rhizosphere bacteria in specific environments, and provide a reference for the exploration and research of rhizosphere growth-promoting bacteria and their roles. [Methods] We carried out 16S rRNA gene high-throughput sequencing and statistical data analysis to compare the composition and structures of the bacterial communities in the rhizosphere soils of highland barley cultivated in five cities of Xizang. We then analyzed the biological markers and the driving factors of community structure changes in the rhizosphere bacteria of highland barley. [Results] The sequencing of 45 rhizosphere soil samples yielded 10 715 operational taxonomic units (OTUs), which belonged to 2 783 species, 1 244 genera of 43 phyla. Actinobacteriota, Proteobacteria, Chloroflexi, Acidobacteriota,Bacteroidota, Firmicutes, Gemmatimonadota, Myxococcota, and Patescibacteria were the dominant bacterial phyla, with the relative abundance of 94.92%-96.56%. The community structure of rhizosphere bacteria showed significant differences among the five cities, with greater inter-group differences than intra-group differences (R=0.226 9, P=0.001). Actinobacteriota, Chloroflexi, Acidobacteriota, Bacteroidota, and Patescibacteria showed different relative abundance among the five cities (P<0.05). We identified potential biological markers in the rhizosphere soil of barley in all five cities. There were potential biological markers in the rhizosphere soil of highland barley in the five cities. Lasa and Shannan had only three and six unique bacterial clades, respectively, with more complex co-occurrence network and tighter connections between OTUs. The key phyla in the rhizosphere of highland barley were Proteobacteria, Chloroflexi,Actinobacteriota, and Acidobacteriota. Additionally, Endobacteria,Methylomirabilota, and Cyanobacteria were unique taxa in Linzhi, Rikaze, and Shannan, respectively. The changes in the bacterial community structure in the rhizosphere of highland barley were mainly related to environmental factors such as pH, total potassium, available potassium, carbon to phosphorus ratio, and altitude, with total potassium being the most important factor (r2=0.621 4, P=0.001). [Conclusion] The bacteria in rhizosphere soil of highland barley in Xizang have high diversity, with significant differences among the five cities. Additionally, different growing areas of highland barley have unique biological markers of bacteria in the rhizosphere. The findings provide a reference for revealing the role of unique rhizosphere bacteria in the growth and environmental adaptation of highland barley and for exploring excellent rhizosphere plant-promoting bacteria.

    参考文献
    [1] DURÁN P, THIERGART T, GARRIDO-OTER R, AGLER M, KEMEN E, SCHULZE-LEFERT P, HACQUARD S. Microbial inter Kingdom interactions in roots promote Arabidopsis survival[J]. Cell, 2018, 175(4):973-983.e14.
    [2] de VRIES FT, GRIFFITHS RI, KNIGHT CG, NICOLITCH O, WILLIAMS A. Harnessing rhizosphere microbiomes for drought-resilient crop production[J]. Science, 2020, 368(6488):270-274.
    [3] KWAK MJ, KONG HG, CHOI K, KWON SK, SONG JY, LEE J, LEE PA, CHOI SY, SEO M, LEE HJ, JUNG EJ, PARK H, ROY N, KIM H, LEE MM, RUBIN EM, LEE SW, KIM JF. Rhizosphere microbiome structure alters to enable wilt resistance in tomato[J]. Nature Biotechnology, 2018, 36(11):1100-1109.
    [4] CHAPARRO JM, SHEFLIN AM, MANTER DK, VIVANCO JM. Manipulating the soil microbiome to increase soil health and plant fertility[J]. Biology and Fertility of Soils, 2012, 48(5):489-499.
    [5] 马得泉. 中国西藏大麦遗传资源[M]. 北京:中国农业出版, 2000:38-60, 155-156. MA DQ. Genetic resources of Tibetan barley in China[M]. Beijing:China Agricultural Press, 2000:38-60, 155-156(in Chinese).
    [6] 吴雪莲, 曲航, 邱城, 余耀斌, 彭杨勤, 郝治华, 张唐伟, 拉琼. 产地及品种对西藏青稞营养品质的影响[J]. 麦类作物学报, 2017, 37(9):1246-1254. WU XL, QU H, QIU C, YU YB, PENG YQ, HAO ZH, ZHANG TW, LHA C. Effect of location and variety on the nutritional quality of Tibetan hulless barley[J]. Journal of Triticeae Crops, 2017, 37(9):1246-1254(in Chinese).
    [7] 王建林, 栾运芳, 大次卓嘎, 胡单. 西藏栽培大麦变种组成和分布规律研究[J]. 中国农业科学, 2006, 39(11):2163-2169. WANG JL, LUAN YF, DACIZHUOGA, HU D. Distribution and composition study of Tibetan cultivated barley varieties[J]. Scientia Agricultura Sinica, 2006, 39(11):2163-2169(in Chinese).
    [8] 刘国一, 尼玛扎西, 宋国英, 陈立勇. 西藏一江两河地区青稞生产土壤养分限制因子分析[J]. 中国农业气象, 2014, 35(3):276-280. LIU GY, LIU GY, SONG GY, CHEN L. Analysis of soil nutrients limiting factors for barley production in centre Tibet[J]. Chinese Journal of Agrometeorology, 2014, 35(3):276-280(in Chinese).
    [9] LING N, WANG TT, KUZYAKOV Y. Rhizosphere bacteriome structure and functions[J]. Nature Communications, 2022, 13:836.
    [10] ZHANG JY, LIU YX, ZHANG N, HU B, JIN T, XU HR, QIN Y, YAN PX, ZHANG XN, GUO XX, HUI J, CAO SY, WANG X, WANG C, WANG H, QU BY, FAN GY, YUAN LX, GARRIDO-OTER R, CHU CC, et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice[J]. Nature Biotechnology, 2019, 37(6):676-684.
    [11] DONN S, KIRKEGAARD JA, PERERA G, RICHARDSON AE, WATT M. Evolution of bacterial communities in the wheat crop rhizosphere[J]. Environmental Microbiology, 2015, 17(3):610-621.
    [12] WALTERS WA, JIN Z, YOUNGBLUT N, WALLACE JG, SUTTER J, ZHANG W, GONZALEZ-PENA A, PEIFFER J, KOREN O, SHI QJ, KNIGHT R, DEL RIO TG, TRINGE SG, BUCKLER ES, DANGL JL, LEY RE. Large-scale replicated field study of maize rhizosphere identifies heritable microbes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(28):7368-7373.
    [13] MENDES LW, KURAMAE EE, NAVARRETE AA, van VEEN JA, TSAI SM. Taxonomical and functional microbial community selection in soybean rhizosphere[J]. The ISME Journal, 2014, 8(8):1577-1587.
    [14] XIONG W, SONG YQ, YANG KM, GU YA, WEI Z, KOWALCHUK GA, XU YC, JOUSSET A, SHEN QR, GEISEN S. Rhizosphere protists are key determinants of plant health[J]. Microbiome, 2020, 8(1):1-9.
    [15] JIN T, WANG YY, HUANG YY, XU J, ZHANG PF, WANG N, LIU X, CHU HY, LIU G, JIANG HG, LI YZ, XU J, KRISTIANSEN K, XIAO L, ZHANG YZ, ZHANG GY, DU GH, ZHANG HB, ZOU HF, ZHANG HF, et al. Taxonomic structure and functional association of foxtail millet root microbiome[J]. GigaScience, 2017, 6(10):1-12.
    [16] BULGARELLI D, SCHLAEPPI K, SPAEPEN S, VER LOREN van THEMAAT E, SCHULZE-LEFERT P. Structure and functions of the bacterial microbiota of plants[J]. Annual Review of Plant Biology, 2013, 64:807-838.
    [17] JOA JH, WEON HY, HYUN HN, JEUN YC, KOH SW. Effect of long-term different fertilization on bacterial community structures and diversity in citrus orchard soil of volcanic ash[J]. Journal of Microbiology, 2014, 52(12):995-1001.
    [18] ZHOU JZ, DENG Y, SHEN LN, WEN CQ, YAN QY, NING DL, QIN YJ, XUE K, WU LY, HE ZL, VOORDECKERS JW, van NOSTRAND JD, BUZZARD V, MICHALETZ ST, ENQUIST BJ, WEISER MD, KASPARI M, WAIDE R, YANG YF, BROWN JH. Temperature mediates continental-scale diversity of microbes in forest soils[J]. Nature Communications, 2016, 7:12083.
    [19] FAN KK. Wheat rhizosphere harbors a less complex and more stable microbial co-occurrence pattern than bulk soil[J]. Soil Biology and Biochemistry, 2018, 125:251-260.
    [20] 何兴华,杨预展,袁志林. 野外树木根系取样及根际土收集操作规程[M/OL]//微生物组实验手册, 2021, Bio-101 e2003655. HE XH, YANG YZ, YUAN ZL. Protocol for sampling of root and rhizosphere soils from trees in natural fields[M/OL]//Microbome Protocls ebook, 2021, Bio-101e2003655(in Chinese).
    [21] ISLAM KR, WEIL RR. Land use effects on soil quality in a tropical forest ecosystem of Bangladesh[J]. Agriculture, Ecosystems and Environment, 2000, 79(1):9-16.
    [22] 鲍士旦, 秦怀英, 劳家柽. 土壤农化分析[M]. 第三版. 北京:农业出版社, 2018:25-114. BAO SD, QIN HY, LAO JS. Soil agrochemical analysis[M]. 3rd. Beijing:China Agriculture Press, 2018:25-114(in Chinese).
    [23] MORI H, MARUYAMA F, KATO H, TOYODA A, DOZONO A, OHTSUBO Y, NAGATA Y, FUJIYAMA A, TSUDA M, KUROKAWA K. Design and experimental application of a novel non-degenerate universal primer set that amplifies prokaryotic 16S rRNA genes with a low possibility to amplify eukaryotic rRNA genes[J]. DNA Research, 2014, 21(2):217-227.
    [24] LI YM, WANG SP, JIANG LL, ZHANG LR, CUI SJ, MENG FD, WANG Q, LI XN, ZHOU Y. Changes of soil microbial community under different degraded gradients of alpine meadow[J]. Agriculture, Ecosystems & Environment, 2016, 222:213-222.
    [25] CAPORASO JG, LAUBER CL, WALTERS WA, BERG-LYONS D, HUNTLEY J, FIERER N, OWENS SM, BETLEY J, FRASER L, BAUER M, GORMLEY N, GILBERT JA, SMITH G, KNIGHT R. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms[J]. The ISME Journal, 2012, 6(8):1621-1624.
    [26] ZHOU H, ZHANG DG, JIANG ZH, SUN P, XIAO HL, WU YX, CHEN JG. Changes in the soil microbial communities of alpine steppe at Qinghai-Tibetan Plateau under different degradation levels[J]. Science of the Total Environment, 2019, 651:2281-2291.
    [27] CSÁRDI G, NEPUSZ T. The igraph software package for complex network research[J]. InterJournal, Complex Systems, 2006, 1695:1-9.
    [28] BASTIAN M, HEYMANN S, JACOMY M. Gephi:an open source software for exploring and manipulating networks[J]. Proceedings of the International AAAI Conference on Web and Social Media, 2009, 3(1):361-362.
    [29] BELSLEY DA, KUH E, WELSCH RE. Regression Diagnostics:Identifying Influential Data and Sources of Collinearity[M]. New York:Wiley, 1980.
    [30] DENG Y, JIANG YH, YANG YF, HE ZL, LUO F, ZHOU JZ. Molecular ecological network analyses[J]. BMC Bioinformatics, 2012, 13:113.
    [31] BULGARELLI D, ROTT M, SCHLAEPPI K, VER LOREN van THEMAAT E, AHMADINEJAD N, ASSENZA F, RAUF P, HUETTEL B, REINHARDT R, SCHMELZER E, PEPLIES J, GLOECKNER FO, AMANN R, EICKHORST T, SCHULZE-LEFERT P. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota[J]. Nature, 2012, 488(7409):91-95.
    [32] PEIFFER JA, SPOR A, KOREN O, JIN Z, TRINGE SG, DANGL JL, BUCKLER ES, LEY RE. Diversity and heritability of the maize rhizosphere microbiome under field conditions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(16):6548-6553.
    [33] LIU ZD, LI L, ZHUO G, XUE B. Characterizing structure and potential function of bacterial and fungal root microbiota in hulless barley cultivars[J]. Journal of Soil Science and Plant Nutrition, 2019, 19(2):420-429.
    [34] 王宇姝, 盛海彦, 罗莎莎, 胡月明, 余玲玲. 环青海湖4种生境土壤中原核微生物群落结构及分子网络特征[J]. 生态环境学报, 2021, 30(7):1393-1403. WANG YS, SHENG HY, LUO SS, HU YM, YU LL. Characteristics of prokaryotic microbial community structure and molecular ecological network in four habitat soils around Lake Qinghai[J]. Ecology and Environment Sciences, 2021, 30(7):1393-1403(in Chinese).
    [35] SUN J, ZHANG Q, ZHOU J, WEI QP. Pyrosequencing technology reveals the impact of different manure doses on the bacterial community in apple rhizosphere soil[J]. Applied Soil Ecology, 2014, 78:28-36.
    [36] WANG QF. Long-term fertilization changes bacterial diversity and bacterial communities in the maize rhizosphere of Chinese mollisols[J]. Applied Soil Ecology, 2018, 125:88-96.
    [37] ANANDHAM R, GANDHI PI, MADHAIYAN M, SA TM. Potential plant growth promoting traits and bioacidulation of rock phosphate by thiosulfate oxidizing bacteria isolated from crop plants[J]. Journal of Basic Microbiology, 2008, 48(6):439-447.
    [38] PODOSOKORSKAYA OA, KADNIKOV VV, GAVRILOV SN, MARDANOV AV, MERKEL AY, KARNACHUK OV, RAVIN NV, BONCH-OSMOLOVSKAYA EA, KUBLANOV IV. Characterization of Melioribacter roseus gen. nov., sp. nov., a novel facultatively anaerobic thermophilic cellulolytic bacterium from the class Ignavibacteria, and a proposal of a novel bacterial phylum Ignavibacteriae[J]. Environmental Microbiology, 2013, 15(6):1759-1771.
    [39] WARD NL, CHALLACOMBE JF, JANSSEN PH, HENRISSAT B, COUTINHO PM, WU M, XIE G, HAFT DH, SAIT M, BADGER J, BARABOTE RD, BRADLEY B, BRETTIN TS, BRINKAC LM, BRUCE D, CREASY T, DAUGHERTY SC, DAVIDSEN TM, DEBOY RT, DODSON RJ, et al. Three genomes from the Phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils[J]. Applied and Environmental Microbiology, 2009, 75(7):2046-2056.
    [40] 杨安娜, 陆云峰, 张俊红, 吴家森, 徐金良, 童再康. 杉木人工林土壤养分及酸杆菌群落结构变化[J]. 林业科学, 2019, 55(1):119-127. YANG AN, LU YF, ZHANG JH, WU JS, XU JL, TONG ZK. Changes in soil nutrients and acidobacteria community structure in Cunninghamia lanceolata plantations[J]. Scientia Silvae Sinicae, 2019, 55(1):119-127(in Chinese).
    [41] NAUMOFF DG, DEDYSH SN. Lateral gene transfer between the Bacteroidetes and Acidobacteria:the case of α-l-rhamnosidases[J]. FEBS Letters, 2012, 586(21):3843-3851.
    [42] SCAVINO AF, JI Y, PUMP J, KLOSE M, CLAUS P, CONRAD R. Structure and function of the methanogenic microbial communities in Uruguayan soils shifted between pasture and irrigated rice fields[J]. Environmental Microbiology, 2013, 15(9):2588-2602.
    [43] MUJAKIĆ I, PIWOSZ K, KOBLÍŽEK M. Phylum Gemmatimonadota and its role in the environment[J]. Microorganisms, 2022, 10(1):151.
    [44] GÓMEZ-ACATA ES, VALENCIA-BECERRIL I, VALENZUELA-ENCINAS C, VELÁSQUEZ-RODRÍGUEZ AS, NAVARRO-NOYA YE, MONTOYA-CIRIACO N, SUÁREZ-ARRIAGA MC, ROJAS-VALDEZ A, REYES-REYES BG, LUNA-GUIDO M, DENDOOVEN L. Deforestation and cultivation with maize (Zea mays L.) has a profound effect on the bacterial community structure in soil[J]. Land Degradation and Development, 2016, 27(4):1122-1130.
    [45] SASSE J, MARTINOIA E, NORTHEN T. Feed your friends:do plant exudates shape the root microbiome?[J]. Trends in Plant Science, 2018, 23(1):25-41.
    [46] LIU C, LI LL, XIE JH, COULTER JA, ZHANG RZ, LUO ZZ, CAI LQ, WANG LL, GOPALAKRISHNAN S. Soil bacterial diversity and potential functions are regulated by long-term conservation tillage and straw mulching[J]. Microorganisms, 2020, 8(6):836.
    [47] LIU HW, BRETTELL LE, QIU ZG, SINGH BK. Microbiome-mediated stress resistance in plants[J]. Trends in Plant Science, 2020, 25(8):733-743.
    [48] LU LH. Fungal networks in yield-invigorating and-debilitating soils induced by prolonged potato monoculture[J]. Soil Biology and Biochemistry, 2013, 65:186-194.
    [49] LUPATINI M, SULEIMAN AKA, JACQUES RJS, ANTONIOLLI ZI, de SIQUEIRA FERREIRA A, KURAMAE EE, ROESCH LFW. Network topology reveals high connectance levels and few key microbial genera within soils[J]. Frontiers in Environmental Science, 2014, 2:10.
    [50] SHI SJ, NUCCIO EE, SHI ZJ, HE ZL, ZHOU JZ, FIRESTONE MK. The interconnected rhizosphere:high network complexity dominates rhizosphere assemblages[J]. Ecology letters, 2016, 19(8):926-936.
    [51] WANG XJ. Composition and diversity of soil microbial communities in the alpine wetland and alpine forest ecosystems on the Tibetan Plateau[J]. Science of the Total Environment, 2020, 747:141358.
    [52] GU YF, BAI Y, XIANG QJ, YU XM, ZHAO K, ZHANG XP, LI CN, LIU SQ, CHEN Q. Degradation shaped bacterial and archaeal communities with predictable taxa and their association patterns in Zoige wetland at Tibet Plateau[J]. Scientific Reports, 2018, 8:3884.
    [53] 张伟, 刘淑娟, 叶莹莹, 陈洪松, 王克林, 韦国富. 典型喀斯特林地土壤养分空间变异的影响因素[J]. 农业工程学报, 2013, 29(1):93-101. ZHANG W, LIU SJ, YE YY, CHEN HS, WANG KL, WEI GF. Spatial variability of soil nutrients and its influencing factors in typical Karst virgin forest[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(1):93-101(in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

巩文峰,魏丽萍,杜娟,王泽莹,马占鸿. 西藏青稞根际细菌群落结构及多样性[J]. 微生物学报, 2023, 63(10): 4034-4050

复制
分享
文章指标
  • 点击次数:222
  • 下载次数: 993
  • HTML阅读次数: 951
  • 引用次数: 0
历史
  • 收稿日期:2023-03-10
  • 最后修改日期:2023-06-21
  • 在线发布日期: 2023-10-09
  • 出版日期: 2023-10-04
文章二维码