微生物降解秸秆木质素的研究进展
作者:
基金项目:

山东省重大科技创新工程项目(2021TZXD002);山东省科技型中小企业创新能力提升工程项目(2022TSGC2060);济南市“新高校20条”资助项目(2021GXRC040);青岛市科技惠民示范专项(23-2-8-xdny-5-nsh)


Research progress in microbial degradation of straw lignin
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [96]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    我国秸秆资源丰富,每年产生逾8亿t作物秸秆。通过秸秆直接还田或肥料化还田不仅可以减少化肥的施用量,缓解农业污染压力,还能实现农作物秸秆的循环利用。木质素结构复杂,且与纤维素和半纤维素相互缠绕,因此秸秆的自然腐解过程中,木质素是主要的限速因子,为了提高降解效率,木质素降解菌的发掘和降解机制也逐渐成为研究热点。本文综述了降解木质素的真菌和细菌的研究现状,对比其真菌和细菌降解特性的优缺点并分析复合降解菌群的优势。随后对木质素降解酶系的酶学性质、在不同微生物中的表达特性进行总结,对木质素降解机制及衍生芳烃代谢路径的研究进展进行综述。最后整理木质素降解微生物在秸秆肥料化技术中的应用进展,并探讨了微生物降解秸秆木质素的应用前景和未来的研究方向。

    Abstract:

    China has abundant straw resources, with over 800 million tons of crop straw produced annually. Directly returning straw to farmlands or using it as fertilizer can not only reduce the use of chemical fertilizers and alleviate agricultural non-point source pollution but also achieve the recycling of crop straw. Lignin has a complex structure and is entangled with cellulose and hemicellulose. Therefore, in the natural decomposition process of straw, lignin is the main limiting factor. Mining lignin-degrading microorganisms and deciphering their degradation mechanisms to improve the degradation efficiency have gradually become research hotspots. By reviewing the available studies of lignin-degrading microorganisms, we compared the lignin degradation characteristics of fungi and bacteria and analyzed the advantages of composite degrading consortia. Subsequently, we summarized the properties of lignin-degrading enzymes and their expression characteristics in different microorganisms, and introduced the research progress in lignin degradation mechanisms and derived aromatic hydrocarbon metabolic pathways. Finally, we reviewed the application of lignin-degrading microorganisms in the production of straw fertilizers and put forward the application prospects and research directions of microbial degradation of lignin in straw.

    参考文献
    [1] 中华人民共和国农业农村部. 全国农作物秸秆综合利用情况报告[R]. http://www.moa.gov.cn/xw/zwdt/202210/t20221010_6412962.htm. 2022.12.15 Ministry of Agriculture and Rural Affairs, PRC. Report on comprehensive utilization of crop straw in China[R]. http://www.moa.gov.cn/xw/zwdt/202210/t20221010_6412962.htm. 2022.12.15(in Chinese).
    [2] MORI T, TSUBOI Y, ISHIDA N, NISHIKUBO N, DEMURA T, KIKUCHI J. Multidimensional high-resolution magic angle spinning and solution-state NMR characterization of 13C-labeled plant metabolites and lignocellulose[J]. Scientific Reports, 2015, 5: 11848.
    [3] ØSTBY H, HANSEN LD, HORN SJ, EIJSINK VGH, VÁRNAI A. Enzymatic processing of lignocellulosic biomass: principles, recent advances and perspectives[J]. Journal of Industrial Microbiology & Biotechnology, 2020, 47(9): 623-657.
    [4] WU YJ, GE SB, XIA CL, MEI CT, KIM KH, CAI LP, SMITH LM, LEE J, SHI SQ. Application of intermittent ball milling to enzymatic hydrolysis for efficient conversion of lignocellulosic biomass into glucose[J]. Renewable and Sustainable Energy Reviews, 2021, 136: 110442.
    [5] WATANABE M, KANAGURI Y, SMITH RL JR. Hydrothermal separation of lignin from bark of Japanese cedar[J]. The Journal of Supercritical Fluids, 2018, 133: 696-703.
    [6] CHIO C, SAIN M, QIN W. Lignin utilization: a review of lignin depolymerization from various aspects[J]. Renewable and Sustainable Energy Reviews, 2019, 107: 232-249.
    [7] CRESTINI C, CRUCIANELLI M, ORLANDI M, SALADINO R. Oxidative strategies in lignin chemistry: a new environmental friendly approach for the functionalisation of lignin and lignocellulosic fibers[J]. Catalysis Today, 2010, 156(1/2): 8-22.
    [8] CAO Y, CHEN SS, ZHANG SC, OK YS, MATSAGAR BM, WU KCW, TSANG DCW. Advances in lignin valorization towards bio-based chemicals and fuels: lignin biorefinery[J]. Bioresource Technology, 2019, 291: 121878.
    [9] ZHU YF, SONG WQ, YAO RJ, ZHAO YZ, XU GY. In-situ catalytic hydropyrolysis of lignin for the production of aromatic rich bio-oil[J]. Journal of the Energy Institute, 2022, 101: 187-193.
    [10] ZHOU NN, THILAKARATHNA WPDW, HE QS, RUPASINGHE HPV. A review: depolymerization of lignin to generate high-value bio-products: opportunities, challenges, and prospects[J]. Frontiers in Energy Research, 2022, 9: 758744.
    [11] WENG CH, PENG XW, HAN YJ. Depolymerization and conversion of lignin to value-added bioproducts by microbial and enzymatic catalysis[J]. Biotechnology for Biofuels, 2021, 14(1): 84.
    [12] BILAL M, AHMAD QAMAR S, YADAV V, CHENG HR, KHAN M, ADIL SF, TAHERZADEH MJ, IQBAL HMN. Exploring the potential of ligninolytic armory for lignin valorization-a way forward for sustainable and cleaner production[J]. Journal of Cleaner Production, 2021, 326: 129420.
    [13] CUI TW, YUAN B, GUO HW, TIAN H, WANG WM, MA YQ, LI CZ, FEI Q. Enhanced lignin biodegradation by consortium of white rot fungi: microbial synergistic effects and product mapping[J]. Biotechnology for Biofuels, 2021, 14(1): 1-11.
    [14] KNEŽEVIĆ A, MILOVANOVIĆ I, STAJIĆ M, LONČAR N, BRČESKI I, VUKOJEVIĆ J, ĆILERDŽIĆ J. Lignin degradation by selected fungal species[J]. Bioresource Technology, 2013, 138: 117-123.
    [15] HOU LP, JI DD, DONG WF, YUAN L, ZHANG FS, LI Y, ZANG LH. The synergistic action of electro-Fenton and white-rot fungi in the degradation of lignin[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 99.
    [16] RADHIKA NL, SACHDEVA S, KUMAR M. Lignin depolymerization and biotransformation to industrially important chemicals/biofuels[J]. Fuel, 2022, 312: 122935.
    [17] ANDLAR M, REZIĆ T, MARĐETKO N, KRACHER D, LUDWIG R, ŠANTEK B. Lignocellulose degradation: an overview of fungi and fungal enzymes involved in lignocellulose degradation[J]. Engineering in Life Sciences, 2018, 18(11): 768-778.
    [18] CHEN Y, FAN H, MENG FR. Pleurotus ostreatusdecreases cornstalk lignin content, potentially improving its suitability for animal feed[J]. Journal of the Science of Food and Agriculture, 2017, 97(5): 1592-1598.
    [19] SHARARI M, JAHAN LATIBARI A, GUILLET A, AUROUSSEAU M, MOUHAMADOU B, RAFEIEE G, MIRSHOKRAEI A, PARSAPAGHOUH D. Application of the white rot fungus Phanerochaete chrysosporium in biotreatment of bagasse effluent[J]. Biodegradation, 2011, 22(2): 421-430.
    [20] SURYADI H, JUDONO JJ, PUTRI MR, ECLESSIA AD, ULHAQ JM, AGUSTINA DN, SUMIATI T. Biodelignification of lignocellulose using ligninolytic enzymes from white-rot fungi[J]. Heliyon, 2022, 8(2): e08865.
    [21] MASRAN R, ZANIRUN Z, BAHRIN EK, IBRAHIM MF, YEE PL, ABD-AZIZ S. Harnessing the potential of ligninolytic enzymes for lignocellulosic biomass pretreatment[J]. Applied Microbiology and Biotechnology, 2016, 100(12): 5231-5246.
    [22] SAINI S, SHARMA KK. Fungal lignocellulolytic enzymes and lignocellulose: a critical review on their contribution to multiproduct biorefinery and global biofuel research[J]. International Journal of Biological Macromolecules, 2021, 193: 2304-2319.
    [23] ATIWESH G, PARRISH CC, BANOUB J, LE TAT. Lignin degradation by microorganisms: a review[J]. Biotechnology Progress, 2022, 38(2): e3226.
    [24] YELLE DJ, RALPH J, LU FC, HAMMEL KE. Evidence for cleavage of lignin by a brown rot basidiomycete[J]. Environmental Microbiology, 2008, 10(7): 1844-1849.
    [25] HAMED SAM. In-vitro studies on wood degradation in soil by soft-rot fungi: Aspergillus niger and Penicillium chrysogenum[J]. International Biodeterioration & Biodegradation, 2013, 78: 98-102.
    [26] ZENG J, SINGH D, LASKAR DD, CHEN S. Degradation of native wheat straw lignin by Streptomyces viridosporus T7A[J]. International Journal of Environmental Science and Technology, 2013, 10(1): 165-174.
    [27] KAMIMURA N, SAKAMOTO S, MITSUDA N, MASAI EIJI, KAJITA S. Advances in microbial lignin degradation and its applications[J]. Current Opinion in Biotechnology, 2019, 56: 179-186.
    [28] MYCROFT Z, GOMIS M, MINES P, LAW P, BUGG TDH. Biocatalytic conversion of lignin to aromatic dicarboxylic acids in Rhodococcus jostii RHA1 by re-routing aromatic degradation pathways[J]. Green Chemistry, 2015, 17(11): 4974-4979.
    [29] BUGG TDH, WILLIAMSON JJ, ALBERTI F. Microbial hosts for metabolic engineering of lignin bioconversion to renewable chemicals[J]. Renewable and Sustainable Energy Reviews, 2021, 152: 111674.
    [30] TAYLOR CR, HARDIMAN EM, AHMAD M, SAINSBURY PD, NORRIS PR, BUGG TDH. Isolation of bacterial strains able to metabolize lignin from screening of environmental samples[J]. Journal of Applied Microbiology, 2012, 113(3): 521-530.
    [31] MEI JF, SHEN XB, GANG LP, XU HJ, WU FF, SHENG LQ. A novel lignin degradation bacteria-Bacillus amyloliquefaciens SL-7 used to degrade straw lignin efficiently[J]. Bioresource Technology, 2020, 310: 123445.
    [32] DUMOND L, LAM LPY, van ERVEN G, KABEL M, MOUNET F, GRIMA-PETTENATI J, TOBIMATSU Y, HERNANDEZ-RAQUET G. Termite gut microbiota contribution to wheat straw delignification in anaerobic bioreactors[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(5): 2191-2202.
    [33] WANG Z, WU WQ, CUI LC, LI X, KULYAR MFEA, XIONG HQ, ZHOU N, YIN HH, LI JK, LI X. Isolation, characterization, and interaction of lignin-degrading bacteria from rumen of buffalo (Bubalus bubalis)[J]. Journal of Basic Microbiology, 2021, 61(8): 757-768.
    [34] XU R, ZHANG K, LIU P, HAN HW, ZHAO S, KAKADE A, KHAN A, DU DL, LI XK. Lignin depolymerization and utilization by bacteria[J]. Bioresource Technology, 2018, 269: 557-566.
    [35] BURAIMOH OM, AMUND OO, IIORI MO.Kraft lignin degradation by autochtonous streptomyces strains isolated from a tropical lagoon ecosystem[J]. Journal of Microbiology, Biotechnology and Food Sciences, 2015, 5(3): 248-253.
    [36] ROELL GW, CARR RR, CAMPBELL T, SHANG ZY, HENSON WR, CZAJKA JJ, MARTÍN HG, ZHANG FZ, FOSTON M, DANTAS G, MOON TS, TANG YJ. A concerted systems biology analysis of phenol metabolism in Rhodococcus opacus PD630[J]. Metabolic Engineering, 2019, 55: 120-130.
    [37] SHIN SK, KO YJ, HYEON JE, HAN SO. Studies of advanced lignin valorization based on various types of lignolytic enzymes and microbes[J]. Bioresource Technology, 2019, 289: 121728.
    [38] KUMAR A, PRIYADARSHINEE R, SINGHA S, SENGUPTA B, ROY A, DASGUPTA D, MANDAL T. Biodegradation of alkali lignin by Bacillus flexus RMWW Ⅱ: analyzing performance for abatement of rice mill wastewater[J]. Water Science and Technology, 2019, 80(9): 1623-1632.
    [39] ZHU DC, ZHANG PP, XIE CX, ZHANG WM, SUN JZ, QIAN WJ, YANG B. Biodegradation of alkaline lignin by Bacillus ligniniphilus L1[J]. Biotechnology for Biofuels, 2017, 10(1): 44.
    [40] CHAUHAN PS. Role of various bacterial enzymes in complete depolymerization of lignin: a review[J]. Biocatalysis and Agricultural Biotechnology, 2020, 23: 101498.
    [41] RESHMY R, ATHIYAMAN BALAKUMARAN P, DIVAKAR K, PHILIP E, MADHAVAN A, PUGAZHENDHI A, SIROHI R, BINOD P, KUMAR AWASTHI M, SINDHU R. Microbial valorization of lignin: prospects and challenges[J]. Bioresource Technology, 2022, 344: 126240.
    [42] YANG J, ZHAO J, JIANG JC, XU H, ZHANG N, XIE JC, WEI M. Isolation and characterization of Bacillus sp. capable of degradating alkali lignin[J]. Frontiers in Energy Research, 2021, 9: 807286.
    [43] YADAV S, CHANDRA R. Syntrophic co-culture of Bacillus subtilis and Klebsiella pneumonia for degradation of kraft lignin discharged from rayon grade pulp industry[J]. Journal of Environmental Sciences, 2015, 33: 229-238.
    [44] JIMÉNEZ-BARRERA D, CHAN-CUPUL W, FAN ZL, OSUNA-CASTRO JA. Fungal co-culture increases ligninolytic enzyme activities: statistical optimization using response surface methodology[J]. Preparative Biochemistry & Biotechnology, 2018, 48(9): 787-798.
    [45] IIMURA Y, ABE H, OTSUKA Y, SATO Y, HABE H. Bacterial community coexisting with white-rot fungi in decayed wood in nature[J]. Current Microbiology, 2021, 78(8): 3212-3217.
    [46] SHUAI L, AMIRI MT, QUESTELL-SANTIAGO YM, HÉROGUEL F, LI YD, KIM H, MEILAN R, CHAPPLE C, RALPH J, LUTERBACHER JS. Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization[J]. Science, 2016, 354(6310): 329-333.
    [47] KAMEI I. Co-culturing effects of coexisting bacteria on wood degradation by Trametes versicolor[J]. Current Microbiology, 2017, 74(1): 125-131.
    [48] LI C, CHEN C, WU XF, TSANG CW, MOU JH, YAN JB, LIU Y, LIN CSK. Recent advancement in lignin biorefinery: with special focus on enzymatic degradation and valorization[J]. Bioresource Technology, 2019, 291: 121898.
    [49] CHAN JC, PAICE M, ZHANG X. Enzymatic oxidation of lignin: challenges and barriers toward practical applications[J]. ChemCatChem, 2020, 12(2): 401-425.
    [50] SHRADDHA, SHEKHER R, SEHGAL S, KAMTHANIA M, KUMAR A. Laccase: microbial sources, production, purification, and potential biotechnological applications[J]. Enzyme Research, 2011, 2011: 217861.
    [51] ZOFAIR SFF, AHMAD S, HASHMI MA, KHAN SH, KHAN MA, YOUNUS H. Catalytic roles, immobilization and management of recalcitrant environmental pollutants by laccases: significance in sustainable green chemistry[J]. Journal of Environmental Management, 2022, 309: 114676.
    [52] CAJNKO MM, OBLAK J, GRILC M, LIKOZAR B. Enzymatic bioconversion process of lignin: mechanisms, reactions and kinetics[J]. Bioresource Technology, 2021, 340: 125655.
    [53] GUTIÉRREZ A, RENCORET J, CADENA EM, RICO A, BARTH D, del RÍO JC, MARTÍNEZ ÁT. Demonstration of laccase-based removal of lignin from wood and non-wood plant feedstocks[J]. Bioresource Technology, 2012, 119: 114-122.
    [54] LI S, TANG B, LIU Y, CHEN AN, TANG WJ, WEI SH. High-level production and characterization of laccase from a newly isolated fungus Trametes sp. LS-10C[J]. Biocatalysis and Agricultural Biotechnology, 2016, 8: 278-285.
    [55] LIU XP, DENG W, YANG Y. Characterization of a novel laccase LAC-Yang1 from white-rot fungus Pleurotus ostreatus strain Yang1 with a strong ability to degrade and detoxify chlorophenols[J]. Molecules, 2021, 26(2): 473.
    [56] DING ZY, PENG L, CHEN YZ, ZHANG L, SHI GY, ZHANG KC. Production and characterization of thermostable laccase from the mushroom, Ganoderma lucidum, using submerged fermentation[J]. African Journal of Microbiology Research, 2012, 6(6): 1147-1157.
    [57] YANG XL, WU YY, ZHANG Y, YANG E, QU Y, XU HN, CHEN YH, IRBIS C, YAN JP. A thermo-active laccase isoenzyme from Trametes trogii and its potential for dye decolorization at high temperature[J]. Frontiers in Microbiology, 2020, 11: 241.
    [58] WANG SS, NING YJ, WANG SN, ZHANG J, ZHANG GQ, CHEN QJ. Purification, characterization, and cloning of an extracellular laccase with potent dye decolorizing ability from white rot fungus Cerrena unicolor GSM-01[J]. International Journal of Biological Macromolecules, 2017, 95: 920-927.
    [59] OLAJUYIGBE FM, FATOKUN CO. Biochemical characterization of an extremely stable pH-versatile laccase from Sporothrix carnis CPF-05[J]. International Journal of Biological Macromolecules, 2017, 94: 535-543.
    [60] GAUR N, NARASIMHULU K, PYDISETTY Y. Biochemical and kinetic characterization of laccase and manganese peroxidase from novel Klebsiella pneumoniae strains and their application in bioethanol production[J]. RSC Advances, 2018, 8(27): 15044-15055.
    [61] JANUSZ G, PAWLIK A,ŚWIDERSKA-BUREK U, POLAK J, SULEJ J, JAROSZ-WILKOŁAZKA A, PASZCZYŃSKI A. Laccase properties, physiological functions, and evolution[J]. International Journal of Molecular Sciences, 2020, 21(3): 966.
    [62] ZHUO R, FAN FF. A comprehensive insight into the application of white rot fungi and their lignocellulolytic enzymes in the removal of organic pollutants[J]. Science of the Total Environment, 2021, 778: 146132.
    [63] WONG DWS. Structure and action mechanism of ligninolytic enzymes[J]. Applied Biochemistry and Biotechnology, 2009, 157(2): 174-209.
    [64] DATTA R, KELKAR A, BARANIYA D, MOLAEI A, MOULICK A, MEENA R, FORMANEK P. Enzymatic degradation of lignin in soil: a review[J]. Sustainability, 2017, 9(7): 1163.
    [65] SÁNCHEZ-RUIZ MI, AYUSO-FERNÁNDEZ I, RENCORET J, GONZÁLEZ-RAMÍREZ AM, LINDE D, DAVÓ-SIGUERO I, ROMERO A, GUTIÉRREZ A, MARTÍNEZ AT, RUIZ-DUEÑAS FJ. Agaricales mushroom lignin peroxidase: from structure-function to degradative capabilities[J]. Antioxidants, 2021, 10(9): 1446.
    [66] LUEANGJAROENKIT P, TEERAPATSAKUL C, SAKKA K, SAKKA M, KIMURA T, KUNITAKE E, CHITRADON L. Two manganese peroxidases and a laccase of Trametes polyzona KU-RNW027 with novel properties for dye and pharmaceutical product degradation in redox mediator-free system[J]. Mycobiology, 2019, 47(2): 217-229.
    [67] ZHANG Y, DONG ZQ, LUO Y, YANG E, XU HN, CHAGAN I, YAN JP. The Manganese peroxidase gene family of Trametes trogii: gene identification and expression patterns using various metal ions under different culture conditions[J]. Microorganisms, 2021, 9(12): 2595.
    [68] ASINA F, BRZONOVA I, KOZLIAK E, KUBÁTOVÁ A, JI Y. Microbial treatment of industrial lignin: successes, problems and challenges[J]. Renewable and Sustainable Energy Reviews, 2017, 77: 1179-1205.
    [69] BARBER-ZUCKER S, MINDEL V, GARCIA-RUIZ E, WEINSTEIN JJ, ALCALDE M, FLEISHMAN SJ. Stable and functionally diverse versatile peroxidases designed directly from sequences[J]. Journal of the American Chemical Society, 2022, 144(8): 3564-3571.
    [70] KONG W, FU X, WANG L, ALHUJAILY A, ZHANG JL, MA FY, ZHANG XY, YU HB. A novel and efficient fungal delignification strategy based on versatile peroxidase for lignocellulose bioconversion[J]. Biotechnology for Biofuels, 2017, 10(1): 1-15.
    [71] CORDAS CM, NGUYEN GS, VALÉRIO GN, JØNSSON M, SÖLLNER K, AUNE IH, WENTZEL A, MOURA JJG. Discovery and characterization of a novel Dyp-type peroxidase from a marine actinobacterium isolated from Trondheim fjord, Norway[J]. Journal of Inorganic Biochemistry, 2022, 226: 111651.
    [72] BROWN ME, CHANG MCY. Exploring bacterial lignin degradation[J]. Current Opinion in Chemical Biology, 2014, 19: 1-7.
    [73] SADAQAT B, KHATOON N, MALIK AY, JAMAL A, FAROOQ U, ALI MI, HE H, LIU FJ, GUO HG, URYNOWICZ M, WANG QR, HUANG ZX. Enzymatic decolorization of melanin by lignin peroxidase from Phanerochaete chrysosporium[J]. Scientific Reports, 2020, 10: 20240.
    [74] SINGH R, SHEDBALKAR UU, NADHE SB, WADHWANI SA, CHOPADE BA. Lignin peroxidase mediated silver nanoparticle synthesis in Acinetobacter sp.[J]. AMB Express, 2017, 7(1): 1-10.
    [75] XU H, GUO MY, GAO YH, BAI XH, ZHOU XW. Expression and characteristics of manganese peroxidase from Ganoderma lucidum in Pichia pastoris and its application in the degradation of four dyes and phenol[J]. BMC Biotechnology, 2017, 17(1): 1-12.
    [76] GAO Y, LI JJ, ZHENG LY, DU YG. Rational design of Pleurotus eryngii versatile ligninolytic peroxidase for enhanced pH and thermal stability through structure-based protein engineering[J]. Protein Engineering, Design and Selection, 2017, 30(11): 743-751.
    [77] LIU JS, ZHANG S, SHI QP, WANG L, KONG W, YU HB, MA FY. Highly efficient oxidation of synthetic and natural lignin-related compounds by Physisporinus vitreus versatile peroxidase[J]. International Biodeterioration & Biodegradation, 2019, 136: 41-48.
    [78] LAUBER C, SCHWARZ T, NGUYEN QK, LORENZ P, LOCHNIT G, ZORN H. Identification, heterologous expression and characterization of a dye-decolorizing peroxidase of Pleurotus sapidus[J]. AMB Express, 2017, 7(1): 1-15.
    [79] RAI A, KLARE JP, REINKE PYA, ENGLMAIER F, FOHRER J, FEDOROV R, TAFT MH, CHIZHOV I, CURTH U, PLETTENBURG O, MANSTEIN DJ. Structural and biochemical characterization of a dye-decolorizing peroxidase from Dictyostelium discoideum[J]. International Journal of Molecular Sciences, 2021, 22(12): 6265.
    [80] KUMAR M, YOU SM, BEIYUAN JZ, LUO G, GUPTA J, KUMAR S, SINGH L, ZHANG SC, TSANG DCW. Lignin valorization by bacterial genus Pseudomonas: state-of-the-art review and prospects[J]. Bioresource Technology, 2021, 320: 124412.
    [81] BRINK DP, RAVI K, LIDÉN G, GORWA-GRAUSLUND MF. Mapping the diversity of microbial lignin catabolism: experiences from the eLignin database[J]. Applied Microbiology and Biotechnology, 2019, 103(10): 3979-4002.
    [82] ZHU DC, QARIA MA, ZHU B, SUN JZ, YANG B. Extremophiles and extremozymes in lignin bioprocessing[J]. Renewable and Sustainable Energy Reviews, 2022, 157: 112069.
    [83] LI F, ZHAO YQ, XUE L, MA FY, DAI SY, XIE SX. Microbial lignin valorization through depolymerization to aromatics conversion[J]. Trends in Biotechnology, 2022, 40(12): 1469-1487.
    [84] JANUSZ G, PAWLIK A, SULEJ J, ŚWIDERSKA-BUREK U, JAROSZ-WILKOŁAZKA A, PASZCZYŃSKI A. Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution[J]. FEMS Microbiology Reviews, 2017, 41(6): 941-962.
    [85] ULLAH M, LIU PY, XIE SX, SUN S. Recent advancements and challenges in lignin valorization: green routes towards sustainable bioproducts[J]. Molecules, 2022, 27(18): 6055.
    [86] KAMIMURA N, TAKAHASHI K, MORI K, ARAKI T, FUJITA M, HIGUCHI Y, MASAI EJ. Bacterial catabolism of lignin-derived aromatics: new findings in a recent decade: update on bacterial lignin catabolism[J]. Environmental Microbiology Reports, 2017, 9(6): 679-705.
    [87] KOHLSTEDT M, STARCK S, BARTON N, STOLZENBERGER J, SELZER M, MEHLMANN K, SCHNEIDER R, PLEISSNER D, RINKEL J, DICKSCHAT JS, VENUS J, van DUUREN JBJH, WITTMANN C. From lignin to nylon: cascaded chemical and biochemical conversion using metabolically engineered Pseudomonas putida[J]. Metabolic Engineering, 2018, 47: 279-293.
    [88] ZUO KJ, LI HN, CHEN JH, RAN QP, HUANG MT, CUI XX, HE LL, LIU JS, JIANG ZB. Effective biotransformation of variety of guaiacyl lignin monomers into vanillin by Bacillus pumilus[J]. Frontiers in Microbiology, 2022, 13: 901690.
    [89] SAHA BC, QURESHI N, KENNEDY GJ, COTTA MA. Biological pretreatment of corn stover with white-rot fungus for improved enzymatic hydrolysis[J]. International Biodeterioration& Biodegradation, 2016, 109: 29-35.
    [90] SONG ZW, WEN XC, SHENG T, SUN CY. Bioaugmentation of corn stalk saccharification with Aspergillus fumigatus under low/high solid loading culture[J]. BioEnergy Research, 2022, 15(4): 1908-1917.
    [91] KULIKOWSKA D, SINDREWICZ S. Effect of barley straw and coniferous bark on humification process during sewage sludge composting[J]. Waste Management, 2018, 79: 207-213.
    [92] CHEN Y, WANG YY, XU Z, LIU YY, DUAN HP. Enhanced humification of maize straw and canola residue during composting by inoculating Phanerochaete chrysosporium in the cooling period[J]. Bioresource Technology, 2019, 293: 122075.
    [93] XU X, PANG DW, CHEN J, LUO YL, ZHENG MJ, YIN YP, LI YX, LI Y, WANG ZL. Straw return accompany with low nitrogen moderately promoted deep root[J]. Field Crops Research, 2018, 221: 71-80.
    [94] ZHOU FY, WU XQ, GAO YX, FAN SS, ZHOU HZ, ZHANG XJ. Diversity shifts in the root microbiome of cucumber under different plant cultivation substrates[J]. Frontiers in Microbiology, 2022, 13: 878409.
    [95] WU XQ, LYU YP, REN H, ZHOU FY, ZHANG XJ, ZHAO XY, ZHANG GZ, YANG HT. Degradation of oxalic acid by Trichoderma afroharzianum and its correlation with cell wall degrading enzymes in antagonizing Botrytis cinerea[J]. Journal of Applied Microbiology, 2022, 133(5): 2680-2693.
    [96] 吴晓青, 张新建, 周方园, 周红姿, 赵晓燕, 谢雪迎, 王加宁. 一株非洲哈茨木霉Ta97及其在秸秆还田方面的应用[P].中国: ZL202011309961.2. 2022.04.15. WU XQ, ZHANG XJ, ZHOU FY, ZHOU HZ, ZHAO XY, XIE XY, WANG JN. A Trichoderma afroharzianum TA97 and its application in straw back to the field[P]. China: ZL202011309961.2. 2022.04.15(in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李强,吴晓青,张新建. 微生物降解秸秆木质素的研究进展[J]. 微生物学报, 2023, 63(11): 4118-4132

复制
分享
文章指标
  • 点击次数:708
  • 下载次数: 1496
  • HTML阅读次数: 1135
  • 引用次数: 0
历史
  • 收稿日期:2023-03-24
  • 最后修改日期:2023-06-19
  • 在线发布日期: 2023-11-03
  • 出版日期: 2023-11-04
文章二维码