细菌中介导多重耐药的Tn7转座子研究进展
作者:
基金项目:

国家自然科学基金(32100147,31830098)


Research progress in Tn7 transposons mediating multidrug resistance in bacteria
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [44]
  • | | | |
  • 文章评论
    摘要:

    转座子是介导细菌耐药性传播的重要可移动遗传元件。Tn7转座子与细菌耐药密切相关,其携带转座模块和Ⅱ类整合子系统。Tn7编码转座相关蛋白TnsABCDE进行“剪切-粘贴”机制转座,转座核心TnsABC也可与三链DNA或Cas-RNA复合物结合实现转座。近年来新发现了多种介导多重耐药的Tn7转座子,其在介导细菌抗生素、消毒剂和重金属抗性基因的获得、传播扩散等方面发挥了重要作用。本文综述了细菌中Tn7转座子的遗传结构、转座机制、流行以及新发现的介导多重耐药的Tn7转座子,以期为细菌中Tn7转座子的深入研究提供参考。

    Abstract:

    Transposons are important mobile genetic elements that mediate the spread of antimicrobial resistance. The transposon Tn7 is closely associated with antimicrobial resistance, carrying a transposition module and a class II integron. Tn7 encodes the transposition-associated proteins TnsABCDE for cut-and-paste transposition, and the transposition core machinery TnsABC can bind to triple-stranded DNA or Cas (clustered regularly interspaced short palindromic repeats associated)-RNA complexes to achieve transposition. In recent years, researchers have identified several novel Tn7 transposons mediating multidrug resistance, which play a role in mediating the acquisition and spread of bacterial genes conferring resistance to antibiotics, disinfectants, and heavy metals. In this paper, we review the genetic structure, transposition mechanism, prevalence of Tn7 transposons and novel Tn7 transposons mediating multidrug resistance in bacteria, with a view to providing a reference for the in-depth study of Tn7 transposons in bacteria.

    参考文献
    [1] FROST LS, LEPLAE R, SUMMERS AO, TOUSSAINT A. Mobile genetic elements: the agents of open source evolution[J]. Nature Reviews Microbiology, 2005, 3(9): 722-732.
    [2] PARTRIDGE SR, KWONG SM, FIRTH N, JENSEN SO. Mobile genetic elements associated with antimicrobial resistance[J]. Clinical Microbiology Reviews, 2018, 31(4): e00088-e00017.
    [3] KAZAZIAN HH JR. Mobile elements: drivers of genome evolution[J]. Science, 2004, 303(5664): 1626-1632.
    [4] HICKMAN AB, DYDA F. DNA transposition at work[J]. Chemical Reviews, 2016, 116(20): 12758-12784.
    [5] LICHTENSTEIN C, BRENNER S. Unique insertion site of Tn7 in the E. coli chromosome[J]. Nature, 1982, 297(5867): 601-603.
    [6] GRINGAUZ E, ORLE KA, WADDELL CS, CRAIG NL. Recognition of Escherichia coli attTn7 by transposon Tn7: lack of specific sequence requirements at the point of Tn7 insertion[J]. Journal of Bacteriology, 1988, 170(6): 2832-2840.
    [7] MCKOWN RL, ORLE KA, CHEN T, CRAIG NL. Sequence requirements of Escherichia coli attTn7, a specific site of transposon Tn7 insertion[J]. Journal of Bacteriology, 1988, 170(1): 352-358.
    [8] WOLKOW CA, DEBOY RT, CRAIG NL. Conjugating plasmids are preferred targets for Tn7[J]. Genes & Development, 1996, 10(17): 2145-2157.
    [9] PETERS JE. Tn7[J]. Microbiology Spectrum, 2014, 2(5): MDNA3-0010-2014.
    [10] PETERS JE, CRAIG NL. Tn7: smarter than we thought[J]. Nature Reviews Molecular Cell Biology, 2001, 2(11): 806-814.
    [11] PETERS JE, MAKAROVA KS, SHMAKOV S, KOONIN EV. Recruitment of CRISPR-Cas systems by Tn7-like transposons[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(35): E7358-E7366.
    [12] KACZMARSKA Z, CZARNOCKI-CIECIURA M, GÓRECKA-MINAKOWSKA KM, WINGO RJ, JACKIEWICZ J, ZAJKO W, POZNAŃSKI JT, RAWSKI M, GRANT T, PETERS JE, NOWOTNY M. Structural basis of transposon end recognition explains central features of Tn7 transposition systems[J]. Molecular Cell, 2022, 82(14): 2618-2632.e7.
    [13] HANSSON K, SUNDSTRÖM L, PELLETIER A, ROY PH. IntI2 integron integrase in Tn7[J]. Journal of Bacteriology, 2002, 184(6): 1712-1721.
    [14] BARABAS O, RICE PA. First full views of a CRISPR-guided system for gene insertion[J]. Nature, 2023, 613(7945): 634-635.
    [15] HSIEH SC, PETERS JE. Discovery and characterization of novel type I-D CRISPR-guided transposons identified among diverse Tn7-like elements in cyanobacteria[J]. Nucleic Acids Research, 2023, 51(2): 765-782.
    [16] PARK JU, TSAI AWL, RIZO AN, TRUONG VH, WELLNER TX, SCHARGEL RD, KELLOGG EH. Structures of the holo CRISPR RNA-guided transposon integration complex[J]. Nature, 2023, 613(7945): 775-782.
    [17] CHOI KY, LI Y, SARNOVSKY R, CRAIG NL. Direct interaction between the TnsA and TnsB subunits controls the heteromeric Tn7 transposase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(22): E2038-E2045.
    [18] HOFFMANN FT, KIM M, BEH LY, WANG J, LEO H VO P, GELSINGER DR, GEORGE JT, ACREE C, MOHABIR JT, FERNÁNDEZ IS, STERNBERG SH. Selective TnsC recruitment enhances the fidelity of RNA-guided transposition[J]. Nature, 2022, 609(7926): 384-393.
    [19] SHEN Y, GOMEZ-BLANCO J, PETASSI MT, PETERS JE, ORTEGA J, GUARNÉ A. Structural basis for DNA targeting by the Tn7 transposon[J]. Nature Structural & Molecular Biology, 2022, 29(2): 143-151.
    [20] STELLWAGEN AE, CRAIG NL. Gain-of-function mutations in TnsC, an ATP-dependent transposition protein that activates the bacterial transposon Tn7[J]. Genetics, 1997, 145(3): 573-585.
    [21] PARKS AR, LI ZP, SHI QJ, OWENS RM, JIN MM, PETERS JE. Transposition into replicating DNA occurs through interaction with the processivity factor[J]. Cell, 2009, 138(4): 685-695.
    [22] PETERS JE, CRAIG NL. Tn7 transposes proximal to DNA double-strand breaks and into regions where chromosomal DNA replication terminates[J]. Molecular Cell, 2000, 6(3): 573-582.
    [23] SHARPE PL, CRAIG NL. Host proteins can stimulate Tn7 transposition: a novel role for the ribosomal protein L29 and the acyl carrier protein[J]. The EMBO Journal, 1998, 17(19): 5822-5831.
    [24] RAO JE, MILLER PS, CRAIG NL. Recognition of triple-helical DNA structures by transposon Tn7[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(8): 3936-3941.
    [25] PETERS JE. Targeted transposition with Tn7 elements: safe sites, mobile plasmids, CRISPR/Cas and beyond[J]. Molecular Microbiology, 2019, 112(6): 1635-1644.
    [26] KLOMPE SE, VO PLH, HALPIN-HEALY TS, STERNBERG SH. Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration[J]. Nature, 2019, 571(7764): 219-225.
    [27] SAITO M, LADHA A, STRECKER J, FAURE G, NEUMANN E, ALTAE-TRAN H, MACRAE RK, ZHANG F. Dual modes of CRISPR-associated transposon homing[J]. Cell, 2021, 184(9): 2441-2453.e18.
    [28] KRAFT CA, TIMBURY MC, PLATT DJ. Distribution and genetic location of Tn7 in trimethoprim-resistant Escherichia coli[J]. Journal of Medical Microbiology, 1986, 22(2): 125-131.
    [29] CHEN YP, LEI CW, KONG LH, ZENG JX, ZHANG XZ, LIU BH, LI Y, XIANG R, WANG YX, CHEN DY, ZHANG AY, WANG HN. Tn6450, a novel multidrug resistance transposon characterized in a Proteus mirabilis isolate from chicken in China[J]. Antimicrobial Agents and Chemotherapy, 2018, 62(4): e02192-17.
    [30] CHEN YP, LEI CW, ZUO L, KONG LH, KANG ZZ, ZENG JX, ZHANG XZ, WANG HN. A novel cfr-carrying Tn7 transposon derivative characterized in Morganella morganiiof swine origin in China[J]. Journal of Antimicrobial Chemotherapy, 2019, 74(3): 603-606.
    [31] HE J, LI C, CUI PF, WANG HN. Detection of Tn7-like transposons and antibiotic resistance in Enterobacterales from animals used for food production with identification of three novel transposons Tn6813, Tn6814, and Tn6765[J]. Frontiers in Microbiology, 2020, 11: 2049.
    [32] CHEN X, LEI CW, LIU SY, LI TY, CHEN YP, WANG YT, LI C, WANG Q, YANG X, HUANG ZR, GAO YF, WANG HN. Characterisation of novel Tn7-derivatives and Tn7-like transposon found in Proteus mirabilis of food-producing animal origin in China[J]. Journal of Global Antimicrobial Resistance, 2022, 28: 233-237.
    [33] ZHOU L, HAN YY, YANG X, WANG HN, LEI CW. Whole genome sequence of Salmonella Rissen SCSW714, a porcine strain harbouring a novel multidrug-resistant Tn7-like pco- and sil-containing transposon[J]. Journal of Global Antimicrobial Resistance, 2022, 29: 307-309.
    [34] APRILE F, HEREDIA-PONCE Z, CAZORLA FM, de VICENTE A, GUTIÉRREZ-BARRANQUERO JA. A large Tn7-like transposon confers hyperresistance to copper in Pseudomonas syringae pv. syringae[J]. Applied and Environmental Microbiology, 2021, 87(5): e02528-20.
    [35] MANN R, RAFEI R, GUNAWAN C, HARMER CJ, HAMIDIAN M. Variants of Tn6924, a novel Tn7 family transposon carrying the blaNDM metallo-β-lactamase and 14 copies of the aphA6 amikacin resistance genes found in Acinetobacter baumannii[J]. Microbiology Spectrum, 2022, 10(1): e0174521.
    [36] HAMIDIAN M, HALL RM. Dissemination of novel Tn7 family transposons carrying genes for synthesis and uptake of fimsbactin siderophores among Acinetobacter baumannii isolates[J]. Microbial Genomics, 2021, 7(3): mgen000548.
    [37] GUAN JY, BAO CM, WANG P, JING Y, WANG LL, LI XY, MU XF, LI BA, ZHOU DS, GUO XJ, YIN Z. Genetic characterization of four groups of chromosome-borne accessory genetic elements carrying drug resistance genes in Providencia[J]. Infection and Drug Resistance, 2022, 15: 2253-2270.
    [38] CRESPO O, CATALANO M, PIÑEIRO S, MATTEO M, LEANZA A, CENTRÓN D. Tn7 distribution in Helicobacter pylori: a selective paradox[J]. International Journal of Antimicrobial Agents, 2005, 25(4): 341-344.
    [39] PARKS AR, PETERS JE. Transposon Tn7 is widespread in diverse bacteria and forms genomic islands[J]. Journal of Bacteriology, 2007, 189(5): 2170-2173.
    [40] ANTUNES P, MACHADO J, PEIXE L. Dissemination of sul3-containing elements linked to class 1 integrons with an unusual 3' conserved sequence region among Salmonella isolates[J]. Antimicrobial Agents and Chemotherapy, 2007, 51(4): 1545-1548.
    [41] WU J, XIE LY, ZHANG FF, NI YX, SUN JY. Molecular characterization of ISCR1-mediated blaPER-1 in a non-O1, non-O139 Vibrio cholerae strain from China[J]. Antimicrobial Agents and Chemotherapy, 2015, 59(7): 4293-4295.
    [42] HICKMAN AB, LI Y, MATHEW SV, MAY EW, CRAIG NL, DYDA F. Unexpected structural diversity in DNA recombination: the restriction endonuclease connection[J]. Molecular Cell, 2000, 5(6): 1025-1034.
    [43] RONNING DR, LI Y, PEREZ ZN, ROSS PD, HICKMAN AB, CRAIG NL, DYDA F. The carboxy-terminal portion of TnsC activates the Tn7 transposase through a specific interaction with TnsA[J]. The EMBO Journal, 2004, 23(15): 2972-2981.
    [44] WANG XT, KONG NN, CAO M, ZHANG L, SUN MZ, XIAO LL, LI G, WEI QH. Comparison of class 2 integron integrase activities[J]. Current Microbiology, 2021, 78(3): 967-978.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈璇,毛铃雅,王钦,王红宁,雷昌伟. 细菌中介导多重耐药的Tn7转座子研究进展[J]. 微生物学报, 2023, 63(11): 4133-4143

复制
分享
文章指标
  • 点击次数:436
  • 下载次数: 1972
  • HTML阅读次数: 842
  • 引用次数: 0
历史
  • 收稿日期:2023-04-03
  • 最后修改日期:2023-07-04
  • 在线发布日期: 2023-11-03
  • 出版日期: 2023-11-04
文章二维码