新生婴儿源植物乳杆菌HLPL03的环境耐受性及其代谢功能低聚糖的生物学活性
作者:
基金项目:

国家自然科学基金(32101915);江西省自然科学基金(20212BAB215033,20224BAB205005)


Newborn-derived Lactiplantibacillus plantarum HLPL03: environmental tolerance and metabolism of functional oligosaccharides
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [36]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】解析健康新生婴儿胎便中植物乳杆菌HLPL03的益生功能,评价其环境耐受性及代谢功能低聚糖的生物学活性。【方法】通过耐受胃肠道条件、过氧化氢和抗生素试验,评估植物乳杆菌HLPL03对极端环境的耐受性;利用改良培养基,评价植物乳杆菌HLPL03代谢功能低聚糖的能力;同时,探究功能低聚糖对植物乳杆菌HLPL03抑菌活性、疏水性和黏附能力的影响。【结果】植物乳杆菌HLPL03在pH 2.5条件下培养3 h后,活菌数仍在104 CFU/mL以上;在0.30%胆盐中培养6 h后,活菌数接近107 CFU/mL;在1.0 mmol/L H2O2强氧化剂条件下培养6 h,活菌数显著升高(P<0.001);除低聚木糖外,植物乳杆菌HLPL03能代谢多种功能低聚糖,并对常见食源性致病菌具有较强的抑制能力;棉子糖是改善植物乳杆菌HLPL03生物学活性的最佳低聚糖,其能提高菌株表面疏水性达36.1%,且促进菌株在Caco-2细胞上的黏附率由16.78%提高至42.11%。【结论】健康新生婴儿源植物乳杆菌HLPL03具有良好的抗环境胁迫能力,且其生物学活性能被棉子糖等功能低聚糖有效促进,可作为特色乳酸菌进行研究和开发。

    Abstract:

    [Objective] To analyze the probiotic functions of Lactiplantibacillus plantarum HLPL03 derived from the stool of healthy newborns and evaluate the environmental tolerance and metabolism of functional oligosaccharides of this strain. [Methods] The tolerance of L. plantarum HLPL03 to extreme conditions was evaluated by treatments with the gastrointestinal environment, hydrogen peroxide, and antibiotics. The modified media were used to evaluate the metabolism of functional oligosaccharides by L. plantarum HLPL03. Furthermore, the effects of functional oligosaccharides on the antibacterial activities, hydrophobicity, and adhesion of L. plantarum HLPL03 were investigated. [Results] The viable count was above 104 CFU/mL when L. plantarum HLPL03 was cultured at pH 2.5 for 3 h and close to 107 CFU/mL after the strain was cultured in 0.30% bile salt for 6 h. The viable count increased significantly when L. plantarum HLPL03 was cultured with 1.0 mmol/L H2O2for 6 h (P<0.001). L. plantarum HLPL03 metabolized different functional oligosaccharides (except xylooligosaccharides) and inhibited common food-borne pathogens. Raffinose was the best oligosaccharide to improve the biological activity of L. plantarum HLPL03. It enhanced the surface hydrophobicity of the strain by 36.1% and increased the adhesion rate of the strain on Caco-2 cells from 16.78% to 42.11%. [Conclusion] L. plantarum HLPL03 from healthy newborns has good resistance to environmental stress, with the biological activities effectively promoted by functional oligosaccharides such as raffinose, serving as characteristic lactic acid bacteria for research and development.

    参考文献
    [1] KUZIEL GA, RAKOFF-NAHOUM S. The gut microbiome[J]. Current Biology: CB, 2022, 32(6): R257-R264.
    [2] COLLADO MC, RAUTAVA S, AAKKO J, ISOLAURI E, SALMINEN S. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid[J]. Scientific Reports, 2016, 6: 23129.
    [3] LAURSEN MF, SAKANAKA M, von BURG N, MÖRBE U, ANDERSEN D, MOLL JM, PEKMEZ CT, RIVOLLIER A, MICHAELSEN KF, MØLGAARD C, LIND MV, DRAGSTED LO, KATAYAMA T, FRANDSEN HL, VINGGAARD AM, BAHL MI, BRIX S, AGACE W, LICHT TR, ROAGER HM. Bifidobacterium species associated with breastfeeding produce aromatic lactic acids in the infant gut[J]. Nature Microbiology, 2021, 6(11): 1367-1382.
    [4] MOOSSAVI S, SEPEHRI S, ROBERTSON B, BODE L, GORUK S, FIELD CJ, LIX LM, de SOUZA RJ, BECKER AB, MANDHANE PJ, TURVEY SE, SUBBARAO P, MORAES TJ, LEFEBVRE DL, SEARS MR, KHAFIPOUR E, AZAD MB. Composition and variation of the human milk microbiota are influenced by maternal and early-life factors[J]. Cell Host and Microbe, 2019, 25(2): 324-335.e4.
    [5] 周彦宏, 李虹甫, 陈思涵, 林官根, 刘昕宇, 满朝新, 徐红华, 姜毓君. 婴儿肠道菌群中乳酸菌的分离鉴定及其多样性分析[J]. 食品工业科技, 2018, 39(19): 96-100, 108. ZHOU YH, LI HF, CHEN SH, LIN GG, LIU XY, MAN CX, XU HH, JIANG YJ. Identifying and analyzing the diversity of lactic acid bacteria in infant gut microbiome[J]. Science and Technology of Food Industry, 2018, 39(19): 96-100, 108(in Chinese).
    [6] SIEZEN RJ, TZENEVA VA, CASTIONI A, WELS M, PHAN HTK, RADEMAKER JLW, STARRENBURG MJC, KLEEREBEZEM M, MOLENAAR D, van HYLCKAMA VLIEG JET. Phenotypic and genomic diversity of Lactobacillus plantarum strains isolated from various environmental niches[J]. Environmental Microbiology, 2010, 12(3): 758-773.
    [7] ENGELHARDT T, SZAKMÁR K, KISKÓ G, MOHÁCSI-FARKAS C, REICHART O. Combined effect of NaCl and low temperature on antilisterial bacteriocin production of Lactobacillus plantarum ST202Ch[J]. LWT, 2018, 89: 104-109.
    [8] WANG J, JI HF, WANG SX, LIU H, ZHANG W, ZHANG DY, WANG YM. Probiotic Lactobacillus plantarum promotes intestinal barrier function by strengthening the epithelium and modulating gut microbiota[J]. Frontiers in Microbiology, 2018, 9: 1953.
    [9] CHEN P, XU HY, TANG H, ZHAO FY, YANG CC, KWOK LY, CONG CL, WU YF, ZHANG WY, ZHOU XF, ZHANG HP. Modulation of gut mucosal microbiota as a mechanism of probiotics-based adjunctive therapy for ulcerative colitis[J]. Microbial Biotechnology, 2020, 13(6): 2032-2043.
    [10] YANG DT, LYU WT, HU ZY, GAO JT, ZHENG ZY, WANG WJ, FIRRMAN J, REN DX. Probiotic effects of Lactobacillus fermentum ZJUIDS06 and Lactobacillus plantarum ZY08 on hypercholesteremic golden hamsters[J]. Frontiers in Nutrition, 2021, 8: 705763.
    [11] LEE YS, LEE D, PARK GS, KO SH, PARK J, LEE YK, KANG J. Lactobacillus plantarum HAC01 ameliorates type 2 diabetes in high-fat diet and streptozotocin-induced diabetic mice in association with modulating the gut microbiota[J]. Food & Function, 2021, 12(14): 6363-6373.
    [12] CUI YH, WANG MH, ZHENG YK, MIAO K, QU XJ. The carbohydrate metabolism of Lactiplantibacillus plantarum[J]. International Journal of Molecular Sciences, 2021, 22(24): 13452.
    [13] ZHANG N, JIN ML, WANG KM, ZHANG ZH, SHAH NP, WEI H. Functional oligosaccharide fermentation in the gut: improving intestinal health and its determinant factors-a review[J]. Carbohydrate Polymers, 2022, 284: 119043.
    [14] LI AL, NI WW, LI Y, ZHANG X, YANG JJ, MA XY, JIA XD, LI C, LIU LB. Effect of 2'-fucosyllactose supplementation on intestinal flora in mice with intestinal inflammatory diseases[J]. International Dairy Journal, 2020, 110: 104797.
    [15] ASADPOOR M, ITHAKISIOU GN, HENRICKS PAJ, PIETERS R, FOLKERTS G, BRABER S. Non-digestible oligosaccharides and short chain fatty acids as therapeutic targets against enterotoxin-producing bacteria and their toxins[J]. Toxins, 2021, 13(3): 175.
    [16] CHENG YJ, YEUNG CY. Recent advance in infant nutrition: human milk oligosaccharides[J]. Pediatrics& Neonatology, 2021, 62(4): 347-353.
    [17] LEE JM, JANG WJ, LEE EW, KONG IS. β-glucooligosaccharides derived from barley β-glucan promote growth of lactic acid bacteria and enhance nisin Z secretion by Lactococcus lactis[J]. LWT, 2020, 122: 109014.
    [18] MA Y, PENG X, YANG JY, GIOVANNI V, WANG C. Impacts of functional oligosaccharide on intestinal immune modulation in immunosuppressive mice[J]. Saudi Journal of Biological Sciences, 2020, 27(1): 233-241.
    [19] 张娜, 占英, 孟迎平, 李一娟, 陶雪莹, 魏华, 张志鸿. 功能低聚糖对植物乳杆菌ZDY2013发酵乳发酵特性及冷藏效果的影响[J]. 现代食品科技, 2021, 37(11): 34-42. ZHANG N, ZHAN Y, MENG YP, LI YJ, TAO XY, WEI H, ZHANG ZH. Effects of functional oligosaccharides on fermentation characteristics and cold storage of fermented milk using Lactobacillus plantarum ZDY2013[J]. Modern Food Science and Technology, 2021, 37(11): 34-42(in Chinese).
    [20] SHI YJ, CUI XY, GU SS, YAN X, LI R, XIA S, CHEN HY, GE JW. Antioxidative and probiotic activities of lactic acid bacteria isolated from traditional artisanal milk cheese from Northeast China[J]. Probiotics and Antimicrobial Proteins, 2019, 11(4): 1086-1099.
    [21] MARAGKOUDAKIS PA, ZOUMPOPOULOU G, MIARIS C, KALANTZOPOULOS G, POT B, TSAKALIDOU E. Probiotic potential of Lactobacillus strains isolated from dairy products[J]. International Dairy Journal, 2006, 16(3): 189-199.
    [22] LIM JH, YOON SM, TAN PL, YANG S, KIM SH, PARK HJ. Probiotic properties of Lactobacillus Plantarum LRCC5193, a plant-origin lactic acid bacterium isolated from kimchi and its use in chocolates[J]. Journal of Food Science, 2018, 83(11): 2802-2811.
    [23] 李一娟, 邵开生, 张娜, 孟迎平, 陶雪莹, 周颖钰, 魏华, 张志鸿. 产reuterin罗伊氏乳杆菌的定向筛选及其生物学特性[J]. 食品科学, 2021, 42(14): 32-38. LI YJ, SHAO KS, ZHANG N, MENG YP, TAO XY, ZHOU YY, WEI H, ZHANG ZH. Directional screening for reuterin-producing Lactobacillus reuteri and its biological characteristics[J]. Food Science, 2021, 42(14): 32-38(in Chinese).
    [24] LEI S, ZHAO RX, SUN JL, RAN JJ, RUAN XL, ZHU Y. Partial purification and characterization of a broad-spectrum bacteriocin produced by a Lactobacillus plantarum zrx03 isolated from infant’s feces[J]. Food Science & Nutrition, 2020, 8(5): 2214-2222.
    [25] YIN QQ, ZHENG QH. Isolation and identification of the dominant Lactobacillus in gut and faeces of pigs using carbohydrate fermentation and 16S rDNA analysis[J]. Journal of Bioscience and Bioengineering, 2005, 99(1): 68-71.
    [26] HERNANDEZ-HERNANDEZ O, MUTHAIYAN A, MORENO FJ, MONTILLA A, SANZ ML, RICKE SC. Effect of prebiotic carbohydrates on the growth and tolerance of Lactobacillus[J]. Food Microbiology, 2012, 30(2): 355-361.
    [27] Dell’ANNO M, GIROMINI C, REGGI S, CAVALLERI M, MOSCATELLI A, ONELLI E, REBUCCI R, SUNDARAM TS, CORANELLI S, SPALLETTA A, BALDI A, ROSSI L. Evaluation of adhesive characteristics of L. plantarum and L. reuteri isolated from weaned piglets[J]. Microorganisms, 2021, 9(8): 1587.
    [28] 鲁曦, 马雨哲, 李国花, 张明新, 赵馨, 刘佩肖, 卫飞鹏. 健康婴儿粪便样本中罗伊氏乳杆菌的分离鉴定与体外益生特性初步研究[J]. 陕西科技大学学报, 2022, 40(3): 59-65. LU X, MA YZ, LI GH, ZHANG MX, ZHAO X, LIU PX, WEI FP. Isolation and identification of Lactobacillus reuteri from stool samples of healthy infants and preliminary study on its probiotic properties in vitro[J]. Journal of Shaanxi University of Science & Technology, 2022, 40(3): 59-65(in Chinese).
    [29] WANG HY, LI L. Comprehensive evaluation of probiotic property, hypoglycemic ability and antioxidant activity of lactic acid bacteria[J]. Foods, 2022, 11(9): 1363.
    [30] 李红叶, 姜帅铭, 赵永平, 张家超. 植物乳杆菌HNU082抗生素抗性与相关基因的关系[J]. 食品工业科技, 2019, 40(6): 6-12. LI HY, JIANG SM, ZHAO YP, ZHANG JC. Relationship between antibiotic resistance and related genes in Lactobacillus plantarum HNU082[J]. Science and Technology of Food Industry, 2019, 40(6): 6-12(in Chinese).
    [31] 汤伟, 胡维, 王菁蕊, 王金菊, 王艳萍. 消化乳杆菌泡菜分离株W369的鉴定及其益生功能[J]. 微生物学报, 2016, 56(6): 932-942. TANG W, HU W, WANG JR, WANG JJ, WANG YP. Identification of a new probiotic Lactobacillus alimentarius W369 from Chinese traditional pickles[J]. Acta Microbiologica Sinica, 2016, 56(6): 932-942(in Chinese).
    [32] 吴佳慧, 刘鹏宇. 氨基糖苷类抗生素的发展历程[J]. 中国抗生素杂志, 2019, 44(11): 1275-1282. WU JH, LIU PY. The past and present of aminoglycoside antibiotics[J]. Chinese Journal of Antibiotics, 2019, 44(11): 1275-1282(in Chinese).
    [33] LUZ C, D'OPAZO V, MAÑES J, MECA G. Antifungal activity and shelf life extension of loaf bread produced with sourdough fermented by Lactobacillus strains[J]. Journal of Food Processing and Preservation, 2019, 43(10): 1-8.
    [34] HERNÁNDEZ-ALCÁNTARA AM, WACHER C, LLAMAS MG, LÓPEZ P, PÉREZ-CHABELA ML. Probiotic properties and stress response of thermotolerant lactic acid bacteria isolated from cooked meat products[J]. LWT, 2018, 91: 249-257.
    [35] CELEBIOGLU HU, OLESEN SV, PREHN K, LAHTINEN SJ, BRIX S, HACHEM MA, SVENSSON B. Mucin- and carbohydrate-stimulated adhesion and subproteome changes of the probiotic bacterium Lactobacillus acidophilus NCFM[J]. Journal of Proteomics, 2017, 163: 102-110.
    [36] SANIDAD KZ, ZENG MY. Neonatal gut microbiome and immunity[J]. Current Opinion in Microbiology, 2020, 56: 30-37.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李金梅,刘雯婷,卢金林,魏华,张志鸿. 新生婴儿源植物乳杆菌HLPL03的环境耐受性及其代谢功能低聚糖的生物学活性[J]. 微生物学报, 2023, 63(11): 4258-4270

复制
分享
文章指标
  • 点击次数:225
  • 下载次数: 735
  • HTML阅读次数: 653
  • 引用次数: 0
历史
  • 收稿日期:2023-03-20
  • 最后修改日期:2023-06-01
  • 在线发布日期: 2023-11-03
  • 出版日期: 2023-11-04
文章二维码