橙皮苷与迷迭香酸组合对育肥猪盲肠肠道形态、抗氧化功能、菌群结构及屏障功能的影响
作者:
基金项目:

国家重点研发计划(2017YFE0135200)


Combination of hesperidin and rosmarinic acid affects cecal morphology, antioxidant function, microbiota structure, and barrier function of finishing pigs
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [44]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】本研究旨在探究橙皮苷与迷迭香酸组合对育肥猪生长性能与盲肠的肠道形态、抗氧化功能、菌群结构及屏障功能的影响。【方法】选取24头90日龄的杜×长×大三元杂交公猪,随机分为4组,每组6个重复,每个重复1头猪,进行为期90 d的试验。对照组(control, Con)饲喂基础日粮,橙皮苷组(hesperidin, Hes)在基础日粮中添加600 mg/kg橙皮苷,迷迭香酸组(rosmarinic acid, RA)在基础日粮中添加40 mg/kg迷迭香酸,橙迷组(Hes×RA)在基础日粮中添加300 mg/kg橙皮苷与20 mg/kg迷迭香酸。【结果】与Con组相比,橙皮苷与迷迭香酸组合显著提高了育肥猪前期、后期、全期的平均日采食量,显著提高了前期、全期的平均日增重,显著降低了全期的料重比(P<0.05);橙皮苷与迷迭香酸组合显著提高了育肥猪盲肠的黏膜厚度,同时显著提高了盲肠的总抗氧化能力(total antioxidant capacity, T-AOC)、超氧化物歧化酶(superoxide dismutase, SOD)活性并增强了核因子E2相关因子(nuclear factor erythroid 2-related factor 2, NRF2)、血红素加氧酶-1 (heme oxygenase-1, HO-1)的相对mRNA表达量(P<0.05);橙皮苷与迷迭香酸组合显著降低了变形杆菌(Proteobacteria)、TerrisporobacterClostridium sensu stricto 1Romboutsia的相对丰度,显著提高了拟杆菌(Bacteroidota)、乳杆菌属(Lactobacillus)、Muribaculaceae_norank、PhascolarctobacteriumRikenellaceae RC9的相对丰度,并显著提高了盲肠食糜中异丁酸与丁酸的浓度,同时显著提高了闭锁小带蛋白-1 (zonula occludens 1, ZO-1)、闭合蛋白-1 (Claudin-1)、黏蛋白-2 (mucin-2, MUC-2)的相对mRNA表达量,显著降低了白细胞介-1β (interleukin-1β, IL-1β)的含量,并显著提高了分泌性免疫球蛋白A (secretory immunoglobulin A, SIgA)的含量(P<0.05)。【结论】橙皮苷与迷迭香酸组合提高了育肥猪的生长性能,改善了盲肠的肠道形态,调节了盲肠食糜菌群组成并增强了盲肠的抗氧化能力与屏障功能。

    Abstract:

    [Objective] To investigate the effect of hesperidin (Hes) and rosmarinic acid (RA) combination on the growth performance and the cecal morphology, antioxidant function, microbiota, and barrier function of finishing pigs. [Methods] Twenty-four 90-day-old Duroc×Landrace×Yorkshire male pigs were randomly assigned to control (Con), Hes, RA, and Hes×RA groups (n=6). The Con, Hes, RA, and Hes×RA groups were given a basal diet, a basal diet supplemented with 600 mg/kg Hes, a basal diet supplemented with 40 mg/kg RA, and a basal diet supplemented with 300 mg/kg Hes and 20 mg/kg RA, respectively. The trial period was 90 d and divided into two stages: early fattening stage (1-40 d) and late fattening stage (40-90 d). [Results] Compared with the Con group, Hes×RA increased the average daily feed intake in the early fattening stage, late fattening stage, and whole period, increased the average daily gain in the early fattening stage and whole period, and decreased the feed/gain ratio in the whole period (P<0.05). Hes×RA increased the mucosal thickness, total antioxidant capacity (T-AOC), and superoxide dismutase (SOD) activity and up-regulated the relative mRNA levels of nuclear factor erythroid 2-related factor 2 (NRF2) and heme oxygenase-1 (HO-1) of cecum (P<0.05). The combination decreased the relative abundance of Proteobacteria, Terrisporobacter, Clostridium sensu stricto 1, and Romboutsia, increased the relative abundance of Bacteroidota,Lactobacillus, Muribaculaceae_norank, Phascolarctobacterium, and Rikenellaceae RC9, and increased the concentrations of isobutyrate and butyrate in the cecal digesta compared with the Con group (P<0.05). Furthermore, this combination up-regulated the relative mRNA levels of zonula occludens 1 (ZO-1), Claudin-1, and mucin-2 (MUC-2), reduced the content of interleukin-1β (IL-1β), and increased the content of secretory immunoglobulin A (SIgA) in the cecum (P<0.05) compared with the Con group. [Conclusion] The Hes×RA combination improved the growth performance and the cecal morphology, microbiota structure, antioxidant capacity, and barrier function of finishing pigs.

    参考文献
    [1] KIM J, GUEVARRA RB, NGUYEN SG, LEE JH, JEONG DK, UNNO T. Effects of the antibiotics growth promoter tylosin on swine gut microbiota[J]. Journal of Microbiology and Biotechnology, 2016, 26(5): 876-882.
    [2] KUMAR SB, ARNIPALLI SR, ZIOUZENKOVA O. Antibiotics in food chain: the consequences for antibiotic resistance[J]. Antibiotics (Basel, Switzerland), 2020, 9(10): 688.
    [3] ZHAO Y, YANG QE, ZHOU X, WANG FH, MUURINEN J, VIRTA MP, BRANDT KK, ZHU YG. Antibiotic resistome in the livestock and aquaculture industries: status and solutions[J]. Critical Reviews in Environmental Science and Technology, 2021, 51(19): 2159-2196.
    [4] WINDISCH W, SCHEDLE K, PLITZNER C, KROISMAYR A. Use of phytogenic products as feed additives for swine and poultry[J]. Journal of Animal Science, 2008, 86(14 suppl): E140-E148.
    [5] MORGAN NK. Managing gut health without reliance on antimicrobials in poultry[J]. Animal Production Science, 2017, 57(11): 2270-2279.
    [6] PYRZYNSKA K. Hesperidin: a review on extraction methods, stability and biological activities[J]. Nutrients, 2022, 14(12): 2387.
    [7] PARK JC, LEE SH, PARK SK, HONG JK, ZHANG ZF, CHO JH, KIM IH. Effects of fruit by-product extracts supplementation on growth performance and nutrient digestibility in growing pigs[J]. Journal of Animal Science and Technology, 2013, 55(4): 257-261.
    [8] GOLIOMYTIS M, KARTSONAS N, CHARISMIADOU MA, SYMEON GK, SIMITZIS PE, DELIGEORGIS SG. The influence of naringin or hesperidin dietary supplementation on broiler meat quality and oxidative stability[J]. PLoS One, 2015, 10(10): e0141652.
    [9] LUO CX, ZOU L, SUN HJ, PENG JY, GAO C, BAO LC, JI RP, JIN Y, SUN SY. A review of the anti-inflammatory effects of rosmarinic acid on inflammatory diseases[J]. Frontiers in Pharmacology, 2020, 11: 153.
    [10] DOMITROVIĆ R, POTOČNJAK I, CRNČEVIĆ-ORLIĆ Ž, ŠKODA M. Nephroprotective activities of rosmarinic acid against cisplatin-induced kidney injury in mice[J]. Food and Chemical Toxicology, 2014, 66: 321-328.
    [11] ABREU AC, COQUEIRO A, SULTAN AR, LEMMENS N, KIM HK, VERPOORTE R, van WAMEL WJB, SIMÕES M, CHOI YH. Looking to nature for a new concept in antimicrobial treatments: isoflavonoids from Cytisus striatus as antibiotic adjuvants against MRSA[J]. Scientific Reports, 2017, 7(1): 1-16.
    [12] 李盼盼, 李润林, 吴佳庆, 雷铭康, 汪晶, 朱伟云. 橙皮苷和迷迭香酸组合对脂多糖攻毒大鼠回肠形态、菌群结构以及炎症反应的影响[J]. 动物营养学报, 2022, 34(4): 2689-2701. LI PP, LI RL, WU JQ, LEI MK, WANG J, ZHU WY. Effects of hesperidin and rosmarinic acid combination on ileal morphology, microbiota structure and inflammatory response of lipopolysaccharide- challenged rats[J]. Chinese Journal of Animal Nutrition, 2022, 34(4): 2689-2701(in Chinese).
    [13] YANG LN, BIAN GR, SU Y, ZHU WY. Comparison of faecal microbial community of lantang, Bama, Erhualian, Meishan, Xiaomeishan, duroc, Landrace, and Yorkshire sows[J]. Asian-Australasian Journal of Animal Sciences, 2014, 27(6): 898-906.
    [14] WANG J, TIAN SY, YU H, WANG J, ZHU WY. Response of colonic mucosa-associated microbiota composition, mucosal immune homeostasis, and barrier function to early life galactooligosaccharides intervention in suckling piglets[J]. Journal of Agricultural and Food Chemistry, 2019, 67(2): 578-588.
    [15] YATAO X, SAEED M, KAMBOH AA, ARAIN MA, AHMAD F, SUHERYANI I, ABD EL-HACK ME, ALAGAWANY M, SHAH QA, CHAO S. The potentially beneficial effects of supplementation with hesperidin in poultry diets[J]. World’s Poultry Science Journal, 2018, 74(2): 265-276.
    [16] KAMBOH AA, ZHU WY. Individual and combined effects of genistein and hesperidin supplementation on meat quality in meat-type broiler chickens[J]. Journal of the Science of Food and Agriculture, 2013, 93(13): 3362-3367.
    [17] SHANG RS, CHEN LF, XIN YZ, WANG GY, LI R, LI SJ, LI LS. Evaluation of rosmarinic acid on broiler growth performance, serum biochemistry, liver antioxidant activity, and muscle tissue composition[J]. Animals, 2022, 12(23): 3313.
    [18] BROOM LJ. Gut barrier function: effects of (antibiotic) growth promoters on key barrier components and associations with growth performance[J]. Poultry Science, 2018, 97(5): 1572-1578.
    [19] CAPALDO CT, POWELL DN, KALMAN D. Layered defense: how mucus and tight junctions seal the intestinal barrier[J]. Journal of Molecular Medicine, 2017, 95(9): 927-934.
    [20] PIOTROWSKA M, SWIERCZYNSKI M, FICHNA J, PIECHOTA-POLANCZYK A. The Nrf2 in the pathophysiology of the intestine: molecular mechanisms and therapeutic implications for inflammatory bowel diseases[J]. Pharmacological Research, 2021, 163: 105243.
    [21] GUR C, KANDEMIR FM, CAGLAYAN C, SATICI E. Chemopreventive effects of hesperidin against paclitaxel-induced hepatotoxicity and nephrotoxicity via amendment of Nrf2/HO-1 and caspase-3/Bax/Bcl-2 signaling pathways[J]. Chemico-Biological Interactions, 2022, 365: 110073.
    [22] CAI X, YANG F, ZHU LH, XIA Y, WU QY, XUE HQ, LU YH. Rosmarinic acid, the main effective constituent of Orthosiphon stamineus, inhibits intestinal epithelial apoptosis via regulation of the Nrf2 pathway in mice[J]. Molecules, 2019, 24(17): 3027.
    [23] STEVENS Y, RYMENANT EV, GROOTAERT C, CAMP JV, POSSEMIERS S, MASCLEE A, JONKERS D. The intestinal fate of citrus flavanones and their effects on gastrointestinal health[J]. Nutrients, 2019, 11(7): 1464.
    [24] BITTNER FIALOVÁ S, KELLO M, ČOMA M, SLOBODNÍKOVÁ L, DROBNÁ E, HOLKOVÁ I, GARAJOVÁ M, MRVA M, ZACHAR V, LUKÁČ M. Derivatization of rosmarinic acid enhances its in vitro antitumor, antimicrobial and antiprotozoal properties[J]. Molecules, 2019, 24(6): 1078.
    [25] ESTRUEL-AMADES S, MASSOT-CLADERA M, PÉREZ-CANO FJ, FRANCH À, CASTELL M, CAMPS-BOSSACOMA M. Hesperidin effects on gut microbiota and gut-associated lymphoid tissue in healthy rats[J]. Nutrients, 2019, 11(2): 324.
    [26] SHIN NR, WHON TW, BAE JW. Proteobacteria: microbial signature of dysbiosis in gut microbiota[J]. Trends in Biotechnology, 2015, 33(9): 496-503.
    [27] MUKHOPADHYA I, HANSEN R, EL-OMAR EM, HOLD GL. IBD—what role do Proteobacteria play?[J]. Nature Reviews Gastroenterology & Hepatology, 2012, 9(4): 219-230.
    [28] LI TJ, CHEN YL, GUA CJ, LI XD. Elevated circulating trimethylamine N-oxide levels contribute to endothelial dysfunction in aged rats through vascular inflammation and oxidative stress[J]. Frontiers in Physiology, 2017, 8: 350.
    [29] KYOUNG H, LEE JJ, CHO JH, CHOE J, KANG J, LEE H, LIU YH, KIM Y, KIM HB, SONG M. Dietary glutamic acid modulates immune responses and gut health of weaned pigs[J]. Animals, 2021, 11(2): 504.
    [30] WANG Y, XU L, LIU JH, ZHU WY, MAO SY. A high grain diet dynamically shifted the composition of mucosa-associated microbiota and induced mucosal injuries in the colon of sheep[J]. Frontiers in Microbiology, 2017, 8: 2080.
    [31] WANG J, JI HF, WANG SX, LIU H, ZHANG W, ZHANG DY, WANG YM. Probiotic Lactobacillus plantarum promotes intestinal barrier function by strengthening the epithelium and modulating gut microbiota[J]. Frontiers in Microbiology, 2018, 9: 1953.
    [32] WU ZY, PAN D, JIANG M, SANG LX, CHANG B. Selenium-enriched Lactobacillus acidophilus ameliorates dextran sulfate sodium-induced chronic colitis in mice by regulating inflammatory cytokines and intestinal microbiota[J]. Frontiers in Medicine, 2021, 8: 716816.
    [33] WU EQ, SONG JZ, PEI LP, LING YQ. Comparison of the gut microbiota disturbance in rat models of irritable bowel syndrome induced by maternal separation and multiple early-life adversity[J]. Frontiers in Cellular and Infection Microbiology, 2021, 10: 581974.
    [34] ZHANG ZC, CAO HY, SONG N, ZHANG LX, CAO YG, TAI JD. Long-term hexavalent chromium exposure facilitates colorectal cancer in mice associated with changes in gut microbiota composition[J]. Food and Chemical Toxicology, 2020, 138: 111237.
    [35] ZHAO YC, XIE B, GAO J, ZHAO GY. Dietary supplementation with sodium sulfate improves rumen fermentation, fiber digestibility, and the plasma metabolome through modulation of rumen bacterial communities in steers[J]. Applied and Environmental Microbiology, 2020, 86(22): e01412-e01420.
    [36] ZHANG JH, MENG H, KONG XC, CHENG XY, MA T, HE H, DU WC, YANG SG, LI SY, ZHANG LM. Combined effects of polyethylene and organic contaminant on zebrafish (Danio rerio): accumulation of 9-nitroanthracene, biomarkers and intestinal microbiota[J]. Environmental Pollution, 2021, 277: 116767.
    [37] WANG BX, YU HS, HE Y, WEN LK, GU JD, WANG XY, MIAO XW, QIU GS, WANG HR. Effect of soybean insoluble dietary fiber on prevention of obesity in high-fat diet fed mice via regulation of the gut microbiota[J]. Food & Function, 2021, 12(17): 7923-7937.
    [38] FIRRMAN J, LIU LS, MAHALAK K, TANES C, BITTINGER K, TU V, BOBOKALONOV J, MATTEI L, ZHANG HJ, van den ABBEELE P. The impact of environmental pH on the gut microbiota community structure and short chain fatty acid production[J]. FEMS Microbiology Ecology, 2022, 98(5): fiac038.
    [39] LEE B, MOON KM, KIM CY. Tight junction in the intestinal epithelium: its association with diseases and regulation by phytochemicals[J]. Journal of Immunology Research, 2018, 2018: 2645465.
    [40] WANG HB, WANG PY, WANG X, WAN YL, LIU YC. Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein Claudin-1 transcription[J]. Digestive Diseases and Sciences, 2012, 57(12): 3126-3135.
    [41] SÁNCHEZ de MEDINA F, ROMERO-CALVO I, MASCARAQUE C, MARTÍNEZ-AUGUSTIN O. Intestinal inflammation and mucosal barrier function[J]. Inflammatory Bowel Diseases, 2014, 20(12): 2394-2404.
    [42] NIELSEN DSG, JENSEN BB, THEIL PK, NIELSEN TS, KNUDSEN KEB, PURUP S. Effect of butyrate and fermentation products on epithelial integrity in a mucus-secreting human colon cell line[J]. Journal of Functional Foods, 2018, 40: 9-17.
    [43] KONG CL, FAAS MM, de VOS P, AKKERMAN R. Impact of dietary fibers in infant formulas on gut microbiota and the intestinal immune barrier[J]. Food & Function, 2020, 11(11): 9445-9467.
    [44] HUNG TV, SUZUKI T. Short-chain fatty acids suppress inflammatory reactions in caco-2 cells and mouse colons[J]. Journal of Agricultural and Food Chemistry, 2018, 66(1): 108-117.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

赵文轩,吴建民,党苗苗,汪晶,朱伟云. 橙皮苷与迷迭香酸组合对育肥猪盲肠肠道形态、抗氧化功能、菌群结构及屏障功能的影响[J]. 微生物学报, 2023, 63(11): 4356-4371

复制
分享
文章指标
  • 点击次数:236
  • 下载次数: 820
  • HTML阅读次数: 667
  • 引用次数: 0
历史
  • 收稿日期:2023-04-04
  • 最后修改日期:2023-06-27
  • 在线发布日期: 2023-11-03
  • 出版日期: 2023-11-04
文章二维码