基于转录组与翻译组的海洋食烷菌(Alcanivorax)烷烃代谢调控研究
作者:
基金项目:

福建省自然科学基金(2021J02015);自然资源部第三海洋研究所科研基本业务费专项资金(2023021)


Regulation of alkane metabolism in Alcanivorax based on transcriptome and translatome
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [43]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】食烷菌是海洋烃类降解优势菌,其烷烃代谢调控机制有待深入研究。本研究拟从食烷菌转录和翻译水平上认识烷烃降解的调控过程。【方法】分别以乙酸和正十六烷(C16)为唯一碳源与能源,获取柴油食烷菌(Alcanivorax dieselolei) B5菌株的转录组和翻译组数据,并整合数据计算得到该菌在2种碳源培养条件下基因的翻译效率。采用基因本体论(gene ontology, GO)和京都基因和基因组百科全书(Kyoto encyclopedia of genes and genomes, KEGG)对差异翻译和翻译效率基因进行功能和代谢通路注释。【结果】当以C16为唯一碳源与能源时,B5菌株烷烃代谢途径的关键基因在转录与翻译水平均大量提升,包括烷烃单加氧酶、细胞色素P450氧化酶、醇脱氢酶和醛脱氢酶等。KEGG富集结果表明,翻译水平显著上调基因参与了肽聚糖生物合成、脂肪酸降解、氯代烷烃降解、氧化磷酸化和生物膜形成等通路;翻译效率差异基因主要富集在铁载体非核糖体肽的生物合成、氧化磷酸化和不饱和脂肪酸的生物合成等途径。通过转录组和翻译组学的联合分析显示,为了适应烷烃氧化,B5有效地协调了转录与翻译过程;B5在2种碳源培养条件下基因表达水平与翻译效率均呈现负相关性;全局蛋白调节因子CsrA和sRNAs参与的转录后调控可能导致了烷烃代谢相关基因的翻译效率差异。【结论】转录组和翻译组数据的联合分析表明转录后调控参与了食烷菌的烷烃代谢过程,本研究为进一步探究食烷菌烷烃代谢的转录后调控机制奠定了基础。

    Abstract:

    [Objective] Alcanivorax is a genus of dominant hydrocarbon-degrading bacteria in the marine environment, and the knowledge about the regulation mechanism of its alkane metabolism is limited. This study aims to decipher the regulation mechanism of alkane degradation by Alcanivorax at both transcriptional and translational levels. [Methods] The transcriptome and translatome data of A. dieselolei B5 grown in the medium with n-hexadecane as the sole carbon and energy source were obtained. The changes in the gene translation efficiency were calculated with sodium acetate as the control. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment was performed for the differentially translated genes (DTGs) and differential translation efficiency genes (DTEGs). [Results] Both the transcriptional and translational levels of the key genes involved in alkane metabolism were significantly up-regulated when A. dieselolei was grown on n-hexadecane. These key genes mainly encoded alkane monooxygenase, cytochrome P450 oxidase, alcohol dehydrogenase, and aldehyde dehydrogenase. KEGG enrichment analysis revealed that the up-regulated DTGs were involved in peptidoglycan biosynthesis, fatty acid degradation, chloroalkane degradation, oxidative phosphorylation, biofilm formation, etc. DTEGs were mainly involved in the biosynthesis of siderophore non-ribosomal peptides, oxidative phosphorylation, biosynthesis of unsaturated fatty acids, etc. The combined analysis of transcriptome and proteome data showed that A. dieselolei efficiently coordinated the transcription and translation processes to adapt to alkane oxidation. The gene expression level and translational efficiency showed a negative correlation under both culture conditions. The global protein regulators CsrA and sRNAs may be involved in post-transcriptional regulation of genes involved in alkane metabolism, leading to differences in the translational efficiency. [Conclusion] The combined analysis of transcriptome and translatome data suggested that post-transcriptional regulation was involved in the alkane metabolism of A. dieselolei. This study underpins further exploration of the post-transcriptional regulatory mechanisms controlling alkane metabolism.

    参考文献
    [1] READMAN JW, FOWLER SW, VILLENEUVE JP, CATTINI C, OREGIONI B, MEE LD. Oil and combustion-product contamination of the Gulf marine environment following the war[J]. Nature, 1992, 358(6388):662-665.
    [2] 高晓攀, 杜显元, 李兴春, 张洪志, 聂世军, 杨斌. 石油降解菌处理污染土壤的研究进展[J]. 当代化工, 2015, 44(12):2814-2817. GAO XP, DU XY, LI XC, ZHANG HZ, NIE SJ, YANG B. Research progress of treating contaminated soil with oil-degrading bacteria[J]. Contemporary Chemical Industry, 2015, 44(12):2814-2817(in Chinese).
    [3] 唐景春, 吕宏虹, 刘庆龙, 朱文英. 石油烃污染及修复过程中的微生物分子生态学研究进展[J]. 微生物学通报, 2015, 42(5):944-955. TANG JC, LV HH, LIU QL, ZHU WY. Recent review on the microbial molecular ecology during contamination and remediation of petroleum hydrocarbons[J]. Microbiology China, 2015, 42(5):944-955(in Chinese).
    [4] KOSTKA JE, PRAKASH O, OVERHOLT WA, GREEN SJ, FREYER G, CANION A, DELGARDIO J, NORTON N, HAZEN TC, HUETTEL M. Hydrocarbon-degrading bacteria and the bacterial community response in gulf of Mexico beach sands impacted by the deepwater horizon oil spill[J]. Applied and Environmental Microbiology, 2011, 77(22):7962-7974.
    [5] LIU CL, SHAO ZZ. Alcanivorax dieselolei sp. nov., a novel alkane-degrading bacterium isolated from sea water and deep-sea sediment[J]. International Journal of Systematic and Evolutionary Microbiology, 2005, 55(3):1181-1186.
    [6] WANG LP, WANG WP, LAI QL, SHAO ZZ. Gene diversity of CYP153A and AlkB alkane hydroxylases in oil-degrading bacteria isolated from the Atlantic Ocean[J]. Environmental Microbiology, 2010, 12(5):1230-1242.
    [7] WANG WP, SHAO ZZ. Diversity of flavin-binding monooxygenase genes (AlmA) in marine bacteria capable of degradation long-chain alkanes[J]. FEMS Microbiology Ecology, 2012, 80(3):523-533.
    [8] WANG WP, WANG LP, SHAO ZZ. Diversity and abundance of oil-degrading bacteria and alkane hydroxylase (alkB) genes in the subtropical seawater of Xiamen Island[J]. Microbial Ecology, 2010, 60(2):429-439.
    [9] LIU CL, WANG WP, WU YH, ZHOU ZW, LAI QL, SHAO ZZ. Multiple alkane hydroxylase systems in a marine alkane degrader, Alcanivorax dieselolei B-5[J]. Environmental Microbiology, 2011, 13(5):1168-1178.
    [10] DUTTA TK, HARAYAMA S. Biodegradation of n-alkylcycloalkanes and n-alkylbenzenes via new pathways in Alcanivorax sp. strain MBIC 4326[J]. Applied and Environmental Microbiology, 2001, 67(4):1970-1974.
    [11] WANG WP, SHAO ZZ. The long-chain alkane metabolism network of Alcanivorax dieselolei[J]. Nature Communications, 2014, 5:5755.
    [12] WEI GS, LI SJ, YE SD, WANG ZN, ZARRINGHALAM K, HE JG, WANG WP, SHAO ZZ. High-resolution small RNAs landscape provides insights into alkane adaptation in the marine alkane-degrader Alcanivorax dieselolei B-5[J]. International Journal of Molecular Sciences, 2022, 23(24):15995.
    [13] INGOLIA NT, GHAEMMAGHAMI S, NEWMAN JRS, WEISSMAN JS. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling[J]. Science, 2009, 324(5924):218-223.
    [14] LI GW, BURKHARDT D, GROSS C, WEISSMAN JS. Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources[J]. Cell, 2014, 157(3):624-635.
    [15] WEINBERG DE, SHAH P, EICHHORN SW, HUSSMANN JA, PLOTKIN JB, BARTEL DP. Improved ribosome-footprint and mRNA measurements provide insights into dynamics and regulation of yeast translation[J]. Cell Reports, 2016, 14(7):1787-1799.
    [16] LOVE MI, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biology, 2014, 15(12):550.
    [17] ASHBURNER M, BALL CA, BLAKE JA, BOTSTEIN D, BUTLER H, CHERRY JM, DAVIS AP, DOLINSKI K, DWIGHT SS, EPPIG JT, HARRIS MA, HILL DP, ISSEL-TARVER L, KASARSKIS A, LEWIS S, MATESE JC, RICHARDSON JE, RINGWALD M, RUBIN GM, SHERLOCK G. Gene ontology:tool for the unification of biology[J]. Nature Genetics, 2000, 25(1):25-29.
    [18] KANEHISA M, GOTO S. KEGG:Kyoto encyclopedia of genes and genomes[J]. Nucleic Acids Research, 2000, 28(1):27-30.
    [19] SONG Y, SHIN J, JIN S, LEE JK, KIM DR, KIM SC, CHO S, CHO BK. Genome-scale analysis of syngas fermenting acetogenic bacteria reveals the translational regulation for its autotrophic growth[J]. BMC Genomics, 2018, 19(1):1-15.
    [20] SHIN J, SONG Y, KANG S, JIN S, LEE JK, KIM DR, CHO S, MÜLLER V, CHO BK. Genome-scale analysis of Acetobacterium woodii identifies translational regulation of acetogenesis[J]. mSystems, 2021, 6(4):e00696-21.
    [21] BEZRUKOV F, PRADOS J, RENZONI A, PANASENKO OO. MazF toxin causes alterations in Staphylococcus aureus transcriptome, translatome and proteome that underlie bacterial dormancy[J]. Nucleic Acids Research, 2021, 49(4):2085-2101.
    [22] CHEN SF, ZHOU YQ, CHEN YR, GU J. Fastp:an ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 2018, 34(17):i884-i890.
    [23] LANGMEAD B, SALZBERG SL. Fast gapped-read alignment with bowtie 2[J]. Nature Methods, 2012, 9(4):357-359.
    [24] PERTEA M, KIM D, PERTEA GM, LEEK JT, SALZBERG SL. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown[J]. Nature Protocols, 2016, 11(9):1650-1667.
    [25] DOBIN A, DAVIS CA, SCHLESINGER F, DRENKOW J, ZALESKI C, JHA S, BATUT P, CHAISSON M, GINGERAS TR. STAR:ultrafast universal RNA-seq aligner[J]. Bioinformatics, 2013, 29(1):15-21.
    [26] ZHONG Y, KARALETSOS T, DREWE P, SREEDHARAN VT, KUO D, SINGH K, WENDEL HG, RÄTSCH G. RiboDiff:detecting changes of mRNA translation efficiency from ribosome footprints[J]. Bioinformatics, 2017, 33(1):139-141.
    [27] KAGE U, POWELL JJ, GARDINER DM, KAZAN K. Ribosome profiling in plants:what is not lost in translation?[J]. Journal of Experimental Botany, 2020, 71(18):5323-5332.
    [28] SONENBERG N, HINNEBUSCH AG. Regulation of translation initiation in eukaryotes:mechanisms and biological targets[J]. Cell, 2009, 136(4):731-745.
    [29] KUSNADI EP, TIMPONE C, TOPISIROVIC I, LARSSON O, FURIC L. Regulation of gene expression via translational buffering[J]. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2022, 1869(1):119140.
    [30] MCMANUS CJ, MAY GE, SPEALMAN P, SHTEYMAN A. Ribosome profiling reveals post-transcriptional buffering of divergent gene expression in yeast[J]. Genome Research, 2014, 24(3):422-430.
    [31] MALYS N, McCARTHY JEG. Translation initiation:variations in the mechanism can be anticipated[J]. Cellular and Molecular Life Sciences, 2011, 68(6):991-1003.
    [32] 郑超星, 马小凤, 张永华, 李洪杰, 张根发. 真核生物mRNA翻译起始机制研究进展[J]. 遗传, 2018, 40(8):607-619. ZHENG CX, MA XF, ZHANG YH, LI HJ, ZHANG GF. Research progress in the mechanism of translation initiation of eukaryotic mRNAs[J]. Hereditas, 2018, 40(8):607-619(in Chinese).
    [33] BANAT IM, FRANZETTI A, GANDOLFI I, BESTETTI G, MARTINOTTI MG, FRACCHIA L, SMYTH TJ, MARCHANT R. Microbial biosurfactants production, applications and future potential[J]. Applied Microbiology and Biotechnology, 2010, 87(2):427-444.
    [34] NAETHER DJ, SLAWTSCHEW S, STASIK S, ENGEL M, OLZOG M, WICK LY, TIMMIS KN, HEIPIEPER HJ. Adaptation of the hydrocarbonoclastic bacterium Alcanivorax borkumensis SK2 to alkanes and toxic organic compounds:a physiological and transcriptomic approach[J]. Applied and Environmental Microbiology, 2013, 79(14):4282-4293.
    [35] BARBATO M, SCOMA A, MAPELLI F, de SMET R, BANAT IM, DAFFONCHIO D, BOON N, BORIN S. Hydrocarbonoclastic Alcanivorax isolates exhibit different physiological and expression responses to n-dodecane[J]. Frontiers in Microbiology, 2016, 7:2056.
    [36] QIAO N, SHAO ZZ. Isolation and characterization of a novel biosurfactant produced by hydrocarbon-degrading bacterium Alcanivorax dieselolei B-5[J]. Journal of Applied Microbiology, 2010, 108(4):1207-1216.
    [37] DONADIO S, MONCIARDINI P, SOSIO M. Polyketide synthases and nonribosomal peptide synthetases:the emerging view from bacterial genomics[J]. Natural Product Reports, 2007, 24(5):1073-1109.
    [38] HUO LJ, HUG JJ, FU CZ, BIAN XY, ZHANG YM, MÜLLER R. Heterologous expression of bacterial natural product biosynthetic pathways[J]. Natural Product Reports, 2019, 36(10):1412-1436.
    [39] HABIB S, AHMAD SA, WAN JOHARI WL, ABD SHUKOR MY, ALIAS SA, SMYKLA J, SARUNI NH, ABDUL RAZAK NS, YASID NA. Production of lipopeptide biosurfactant by a hydrocarbon-degrading Antarctic Rhodococcus[J]. International Journal of Molecular Sciences, 2020, 21(17):6138.
    [40] ROONGSAWANG N, WASHIO K, MORIKAWA M. Diversity of nonribosomal peptide synthetases involved in the biosynthesis of lipopeptide biosurfactants[J]. International Journal of Molecular Sciences, 2010, 12(1):141-172.
    [41] KADI N, CHALLIS GL. Chapter 17. Siderophore biosynthesis a substrate specificity assay for nonribosomal peptide synthetase-independent siderophore synthetases involving trapping of acyl-adenylate intermediates with hydroxylamine[J]. Methods in Enzymology, 2009, 458:431-457.
    [42] DENARO R, CRISAFI F, RUSSO D, GENOVESE M, MESSINA E, GENOVESE L, CARBONE M, CIAVATTA ML, FERRER M, GOLYSHIN P, YAKIMOV MM. Alcanivorax borkumensis produces an extracellular siderophore in iron-limitation condition maintaining the hydrocarbon-degradation efficiency[J]. Marine Genomics, 2014, 17:43-52.
    [43] GAUGLITZ JM, ZHOU HJ, BUTLER A. A suite of citrate-derived siderophores from a marine Vibrio species isolated following the Deepwater Horizon oil spill[J]. Journal of Inorganic Biochemistry, 2012, 107(1):90-95.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王子宁,位光山,张希妍,王万鹏,邵宗泽. 基于转录组与翻译组的海洋食烷菌(Alcanivorax)烷烃代谢调控研究[J]. 微生物学报, 2023, 63(12): 4606-4624

复制
分享
文章指标
  • 点击次数:313
  • 下载次数: 758
  • HTML阅读次数: 655
  • 引用次数: 0
历史
  • 收稿日期:2023-04-16
  • 录用日期:2023-07-05
  • 在线发布日期: 2023-11-29
  • 出版日期: 2023-12-04
文章二维码