利用CRISPRi挖掘大肠杆菌生物合成D-泛酸的关键基因
作者:
基金项目:

国家重点研发计划(2018YFA0901400);国家自然科学基金(32070099, 31971342)


Mining key genes for biosynthesis of D-pantothenic acid in Escherichia coli by CRISPRi
Author:
  • ZHANG Bo

    ZHANG Bo

    The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China;Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China;Huadong Industrial Technology Research Institute of Synthetic Biology, Hangzhou 310014, Zhejiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • YANG Yufeng

    YANG Yufeng

    The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China;Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • HE Zhoulin

    HE Zhoulin

    The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China;Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHANG Yuqiong

    ZHANG Yuqiong

    The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China;Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Zhiqiang

    LIU Zhiqiang

    The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China;Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China;Huadong Industrial Technology Research Institute of Synthetic Biology, Hangzhou 310014, Zhejiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHENG Yuguo

    ZHENG Yuguo

    The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China;Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China;Huadong Industrial Technology Research Institute of Synthetic Biology, Hangzhou 310014, Zhejiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】D-泛酸(D-pantothenic acid, DPA)是一种重要的功能化合物,被广泛应用于医疗保健、化妆品、动物食品和饲料等领域,具有良好的市场前景及应用。本研究以实验室保藏的大肠杆菌菌株DPAP10为底盘菌株,利用CRISPR干扰(clustered regularly interspaced palindromic repeats interference, CRISPRi)技术,筛选影响工程菌株DPA生物合成的内源性基因靶点。【方法】构建了pTarget和pdCas9的双质粒CRISPRi系统,可以实现对基因单个或组合表达抑制,摇瓶发酵检测基因抑制对DPA合成的影响;通过实时荧光定量聚合酶链式反应(real-time fluorescence quantitative polymerase chain reaction, RT-qPCR)检测了基因抑制后的转录水平;通过高效液相色谱(high performance liquid chromatography, HPLC)检测了中间代谢物分析代谢通路变化。【结果】成功从126个靶基因中筛选得到5个显著影响DPA合成的关键基因pgkgltAptsHptsIcrp和7个基因组合pgk-gltApgk-ptsHgltA-ptsHpgk-ptsIgltA-ptsIpgk-crpgltA-crp,其中菌株DPAP10/ pdCas9+pT-gltA-ptsH相对于原始菌株DPAP10,在摇瓶中DPA产量提高了49.5%达到5.3 g/L,进一步在基因组上对gltAptsH的表达进行下调,得到工程菌株DPAP10-gltATTG-ptsHTTG,最终在5 L罐中DPA产量相较于对照菌株DPAP10在相同培养条件下提高了19.5%达到75.4 g/L。【结论】本研究证实CRISPRi筛选可以得到对DPA合成有益的基因靶点;中间代谢物检测分析发现,改变丙酮酸通量分布和降低三羧酸(tricarboxylic acid, TCA)循环速率,会导致碳流更多流向DPA合成代谢路径中,从而提高DPA的产量,这一发现为构建更高产菌株提供了新思路。

    Abstract:

    [Objective] D-pantothenic acid (DPA) is a functional compound widely used in medical care, cosmetics, animal food and feed and other fields, with good market prospects. This study aims to use CRISPRi to mine the endogenous gene targets affecting the biosynthesis of DPA by the lab-stored Escherichia coli strain DPAP10. [Methods] We constructed a dual-plasmid CRISPRi system with pTarget and pdCas9 to achieve the inhibition of gene expression individually or in combination. Shaking flask fermentation was carried out to validate the effect of gene blocking on DPA production. Real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) was employed to determine the transcription level after gene blocking. The changes of metabolic pathways were analyzed by high performance liquid chromatography (HPLC). [Results] We screened out 5 key genes (pgk, gltA, ptsH, ptsI, and crp) and 7 gene combinations (pgk-gltA, pgk-ptsH, gltA-ptsH, pgk-ptsI, gltA-ptsI, pgk-crp, and gltA-crp) from 126 target genes. The engineered strain DPAP10/pdCas9+pT-gltA-ptsH showed the DPA yield of 5.3 g/L in a shaking flask, which increased by 49.5% compared with that by the start strain DPAP10. Furthermore, we down-regulated the expression of gltA and ptsH to construct an engineered strain DPAP10-gltATTG-ptsHTTG. This strain showed the DPA yield of 75.4g/L in 5 L fermentor which compared with the control strain DPAP10 under the same culture conditions increased by 19.5%. [Conclusion] We confirmed that CRISPRi could mine the genes involved in DPA synthesis. Changing the pyruvate flux and reducing the tricarboxylic acid (TCA) cycling rate would promote the carbon flow into the DPA synthesis, thus increasing DPA production. This finding provides a new idea for constructing higher yielding strains.

    参考文献
    [1] ZHANG B, ZHANG XM, WANG W, LIU ZQ, ZHENG YG. Metabolic engineering of Escherichia coli for D-pantothenic acid production[J]. Food Chemistry, 2019, 294:267-275.
    [2] ZOU SP, ZHAO K, WANG ZJ, ZHANG B, LIU ZQ, ZHENG YG. Overproduction of D-pantothenic acid via fermentation conditions optimization and isoleucine feeding from recombinant Escherichia coli W3110[J]. 3 Biotech, 2021, 11(6):295.
    [3] CHASSAGNOLE C, DIANO A, LÉTISSE F, LINDLEY, ND. Metabolic network analysis during feD-batch cultivation of Corynebacterium glutamicum for pantothenic acid production:first quantitative data and analysis of by-product formation[J]. Journal of Biotechnology, 2003, 104(1/2/3):261-272.
    [4] YOCUM RR, PATTERSON TA, PERO JG, HERMANN T. Microorganisms and processes for enhanced production of pantothenate[P]. US:7989187B2. 2011-08-02.
    [5] ZHANG B, CHEN L, JIN JY, ZHONG N, CAI X, ZOU SP, ZHOU HY, LIU ZQ, ZHENG YG. Strengthening the (R)-pantoate pathway to produce D-pantothenic acid based on systematic metabolic analysis[J]. Food Bioscience, 2021, 43:101283.
    [6] 田开仁, 薛二淑, 宋倩倩, 乔建军, 李艳妮. CRISPR-dCas9调控基因转录的研究进展[J]. 中国生物工程杂志, 2018, 38(7):94-101.TIAN KR, XUE ES, SONG QQ, QIAO JJ, LI YN. The research progress of CRISPR-dCas9 in transcriptional regulation[J]. China Biotechnology, 2018, 38(7):94-101(in Chinese).
    [7] STACHLER AE, SCHWARZ TS, SCHREIBER S, MARCHFELDER A. CRISPRi as an efficient tool for gene repression in archaea[J]. Methods, 2020, 172:76-85.
    [8] BATIANIS C, KOZAEVA E, DAMALAS SG, MARTÍN-PASCUAL M, VOLKE DC, NIKEL PI, MARTINS DOS SANTOS VAP. An expanded CRISPRi toolbox for tunable control of gene expression in Pseudomonas putida[J]. Microbial Biotechnology, 2020, 13(2):368-385.
    [9] FANG LX, FAN J, LUO SL, CHEN YR, WANG CY, CAO YX, SONG H. Genome-scale target identification in Escherichia coli for high-titer production of free fatty acids[J]. Nature Communications, 2021, 12:4976.
    [10] LI N, SHAN XY, ZHOU JW, YU SQ. Identification of key genes through the constructed CRISPR-dcas9 to facilitate the efficient production of O-acetylhomoserine in Corynebacterium glutamicum[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10:978686.
    [11] LI B, ZHANG B, WANG P, CAI X, TANG YQ, JIN JY, LIANG JX, LIU ZQ, ZHENG YG. Targeting metabolic driving and minimization of by-products synthesis for high-yield production of D-pantothenate in Escherichia coli[J]. Biotechnology Journal, 2022, 17(1):e2100431.
    [12] 罗玉常, 窦文芳, 张晓梅, 史劲松, 许正宏. 谷氨酸棒杆菌ilvE基因的敲除对相关氨基酸合成的影响[J]. 生物技术通报, 2012(11):185-191.LUO YC, DOU WF, ZHANG XM, SHI JS, XU ZH. Effect of ilvE gene knockout on amino acids synthesis of Corynebacterium glutamicum[J]. Biotechnology Bulletin, 2012(11):185-191(in Chinese).
    [13] STAUFFER LT, STAUFFER GV. Role for the leucine-responsive regulatory protein (Lrp) as a structural protein in regulating the Escherichia coli gcvTHP operon[J]. Microbiology, 1999, 145(3):569-576.
    [14] GUO L, DIAO WW, GAO C, HU GP, DING Q, YE C, CHEN XL, LIU J, LIU LM. Engineering Escherichia coli lifespan for enhancing chemical production[J]. Nature Catalysis, 2020, 3(3):307-318.
    [15] YANG YT, BENNETT GN, SAN KY. The effects of feed and intracellular pyruvate levels on the redistribution of metabolic fluxes in Escherichia coli[J]. Metabolic Engineering, 2001, 3(2):115-123.
    [16] GOSSET G. Improvement of Escherichia coli production strains by modification of the phosphoenolpyruvate:sugar phosphotransferase system[J]. Microbial Cell Factories, 2005, 4(1):14.
    [17] LAI SJ, ZHANG Y, LIU SW, LIANG Y, SHANG XL, CHAI X, WEN TY. Metabolic engineering and flux analysis of Corynebacterium glutamicum for l-serine production[J]. Science China Life Sciences, 2012, 55(4):283-290.
    [18] LIU SY, DAI ZW, COOPER DE, KIRSCH DG, LOCASALE JW. Quantitative analysis of the physiological contributions of glucose to the TCA cycle[J]. Cell Metabolism, 2020, 32(4):619-628.e21.
    [19] SHIMADA T, FUJITA N, YAMAMOTO K, ISHIHAMA A. Novel roles of cAMP receptor protein (CRP) in regulation of transport and metabolism of carbon sources[J]. PLoS One, 2011, 6(6):e20081.
    [20] JAHAN N, MAEDA K, MATSUOKA Y, SUGIMOTO Y, KURATA H. Development of an accurate kinetic model for the central carbon metabolism of Escherichia coli[J]. Microbial Cell Factories, 2016, 15(1):112.
    [21] SINGHA TK, GULATI P, MOHANTY A, KHASA YP, KAPOOR RK, KUMAR S. Efficient genetic approaches for improvement of plasmid based expression of recombinant protein in Escherichia coli:a review[J]. Process Biochemistry, 2017, 55:17-31.
    [22] HECHT A, GLASGOW J, JASCHKE PR, BAWAZER LA, MUNSON MS, COCHRAN JR, ENDY D, SALIT M. Measurements of translation initiation from all 64 codons in E. coli[J]. Nucleic Acids Research, 2017, 45(7):3615-3626.
    [23] GAO C, WANG SH, HU GP, GUO L, CHEN XL, XU P, LIU LM. Engineering Escherichia coli for malate production by integrating modular pathway characterization with CRISPRi-guided multiplexed metabolic tuning[J]. Biotechnology and Bioengineering, 2018, 115(3):661-672.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张博,杨玉凤,贺周霖,章誉琼,柳志强,郑裕国. 利用CRISPRi挖掘大肠杆菌生物合成D-泛酸的关键基因[J]. 微生物学报, 2023, 63(12): 4625-4643

复制
分享
文章指标
  • 点击次数:342
  • 下载次数: 898
  • HTML阅读次数: 887
  • 引用次数: 0
历史
  • 收稿日期:2023-04-17
  • 录用日期:2023-07-13
  • 在线发布日期: 2023-11-29
  • 出版日期: 2023-12-04
文章二维码