结核分枝杆菌PE_PGRS15调控分枝杆菌细胞包膜结构与耐药性
作者:
基金项目:

国家自然科学基金(81601740);四川省科技厅项目(2018JY0108);内江师范学院科研项目(17CZ01);大学生创新创业训练计划项目


Mycobacterium tuberculosis PE_PGRS15 modulates the envelope structure and stress resistance of mycobacteria
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [33]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】研究结核分枝杆菌PE_PGRS15的功能。【方法】构建过表达PE_PGRS15蛋白的重组耻垢分枝菌酸杆形菌,通过细胞分级分离实验检测其细胞定位。通过涂布实验、扫描电镜和透射电镜观察细菌菌落形态、细菌表面形态及细胞包膜(cell envelope)结构。通过杀菌曲线法及微量肉汤稀释法检测重组菌对环境压力及抗生素的耐受性。通过染料摄取实验检测重组菌细胞壁通透性,并用气相色谱-质谱联用仪检测重组菌细胞壁脂肪酸谱。通过蛋白截短及融合实验分析PE_PGRS15蛋白结构域的功能。【结果】PE_PGRS15蛋白定位于重组菌细胞壁,其表达影响重组菌菌落形态和细胞包膜结构,增强重组菌对环境压力和抗生素的耐受。PE_PGRS15的表达导致重组菌细胞包膜脂肪酸含量增加,也降低了重组菌的细胞壁通透性。PE_PGRS15蛋白的PE结构域负责将该蛋白转运到细胞表面,而PGRS结构域介导重组菌对压力条件和抗生素的耐受。【结论】PE_PGRS15蛋白可能通过调控耻垢分枝菌酸杆形菌细胞包膜的结构进而影响细菌菌落形态、细胞壁通透性及耐药性,为解析PE/PPE家族蛋白的功能奠定了一定的基础。

    Abstract:

    [Objective] To reveal the function of PE_PGRS15 from Mycobacterium tuberculosis. [Methods] A recombinant Mycolicibacterium smegmatis strain heterologously expressing PE_PGRS15 (MS-PE_PGRS15) was generated. The colony morphology, cell surface morphology, and envelope structure were observed by a plating method, a scanning electron microscope, and a transmission electron microscope, respectively. The localization of PE_PGRS15 was detected by the cell fractionation assay. The resistance of the recombinant strain to environmental stresses and antibiotics was measured by the killing curve method and micro-broth dilution method. The permeability and fatty acid profile of the cell wall of the recombinant strain were determined by dye uptake assay and gas chromatography-mass spectrometry, respectively. The functions of different domains of PE_PGRS15 were analyzed by protein truncation and fusion experiments. [Results] PE_PGRS15 was located on the cell envelope of MS-PE_PGRS15. MS-PE_PGRS15 showed altered colony morphology, envelope structure, and cell wall fatty acid profile, with noticeable increase in resistance to multiple environmental stresses and antibiotics. The dye uptake experiments with ethidium bromide and Nile red suggested that the cell wall of MS-PE_PGRS15 was more impermeable than that of the control strain. The PGRS domain of PE_PGRS15 affected mycobacterial cell wall permeability and stress resistance, while the PE domain was involved in the transport of the protein to the cell surface. [Conclusion] PE_PGRS15 was present in the cell wall fraction of MS-PE_PGRS15 and influenced cell wall permeability and colony morphology, ultimately enhancing the resistance of recombinant M. smegmatis to stresses.

    参考文献
    [1] WHO. Gobal tuberculosis report 2022[J/OL]. Available at:https://www.who.int/publications/i/item/9789240061729,2022.10.27.
    [2] LI W, DENG WY, XIE JP. Expression and regulatory networks of Mycobacterium tuberculosis PE/PPE family antigens[J]. Journal of Cellular Physiology, 2019, 234(6):7742-7751.
    [3] de MAIO F, BERISIO R, MANGANELLI R, DELOGU G. PE_PGRS proteins of Mycobacterium tuberculosis:a specialized molecular task force at the forefront of host-pathogen interaction[J]. Virulence, 2020, 11(1):898-915.
    [4] BRENNAN MJ. The enigmatic PE/PPE multigene family of mycobacteria and tuberculosis vaccination[J]. Infection and Immunity, 2017, 85(6):e00969-e00916.
    [5] ATES LS. New insights into the mycobacterial PE and PPE proteins provide a framework for future research[J]. Molecular Microbiology, 2020, 113(1):4-21.
    [6] CHATRATH S, GUPTA VK, DIXIT A, GARG LC. PE_PGRS30 of Mycobacterium tuberculosis mediates suppression of proinflammatory immune response in macrophages through its PGRS and PE domains[J]. Microbes and Infection, 2016, 18(9):536-542.
    [7] BANU S, HONORÉ N, SAINT-JOANIS B, PHILPOTT D, PRÉVOST MC, COLE ST. Are the PE-PGRS proteins of Mycobacterium tuberculosis variable surface antigens?[J]. Molecular Microbiology, 2002, 44(1):9-19.
    [8] DELOGU G, PUSCEDDU C, BUA A, FADDA G, BRENNAN MJ, ZANETTI S. Rv1818c-encoded PE_PGRS protein of Mycobacterium tuberculosis is surface exposed and influences bacterial cell structure[J]. Molecular Microbiology, 2004, 52(3):725-733.
    [9] KIM JS, KIM HK, CHO E, MUN SJ, JANG S, JANG J, YANG CS. PE_PGRS38 interaction with HAUSP downregulates antimycobacterial host defense via TRAF6[J]. Frontiers in Immunology, 2022, 13:862628.
    [10] QIAN JN, HU YW, ZHANG X, CHI MZ, XU SY, WANG HH, ZHANG XL. Mycobacterium tuberculosis PE_PGRS19 induces pyroptosis through a non-classical caspase-11/GSDMD pathway in macrophages[J]. Microorganisms, 2022, 10(12):2473.
    [11] LI W, DENG WY, ZHANG N, PENG HJ, XU Y. Mycobacterium tuberculosis Rv2387 facilitates mycobacterial survival by silencing TLR2/p38/JNK signaling[J]. Pathogens, 2022, 11(9):981.
    [12] RENGARAJAN J, MURPHY E, PARK A, KRONE CL, HETT EC, BLOOM BR, GLIMCHER LH, RUBIN EJ. Mycobacterium tuberculosis Rv2224c modulates innate immune responses[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(1):264-269.
    [13] LI QM, ZHOU ML, FAN XY, YAN JL, LI WM, XIE JP. Mycobacteriophage SWU1 gp39 can potentiate multiple antibiotics against Mycobacterium via altering the cell wall permeability[J]. Scientific Reports, 2016, 6:28701.
    [14] REN HP, LIU J. AsnB is involved in natural resistance of Mycobacterium smegmatis to multiple drugs[J]. Antimicrobial Agents and Chemotherapy, 2006, 50(1):250-255.
    [15] CHUANG YM, BANDYOPADHYAY N, RIFAT D, RUBIN H, BADER JS, KARAKOUSIS PC. Deficiency of the novel exopolyphosphatase Rv1026/PPX2 leads to metabolic downshift and altered cell wall permeability in Mycobacterium tuberculosis[J]. mBio, 2015, 6(2):e02428-14.
    [16] RODRIGUES L, MACHADO D, COUTO I, AMARAL L, VIVEIROS M. Contribution of efflux activity to isoniazid resistance in the Mycobacterium tuberculosis complex[J]. Infection, Genetics and Evolution, 2012, 12(4):695-700.
    [17] BENTLEY WE, MIRJALILI N, ANDERSEN DC, DAVIS RH, KOMPALA DS. Plasmid-encoded protein:the principal factor in the "metabolic burden" associated with recombinant bacteria[J]. Biotechnology and Bioengineering, 1990, 35(7):668-681.
    [18] SINGH P, RAO RN, REDDY JRC, PRASAD R, KOTTURU SK, GHOSH S, MUKHOPADHYAY S. PE11, a PE/PPE family protein of Mycobacterium tuberculosis is involved in cell wall remodeling and virulence[J]. Scientific Reports, 2016, 6:21624.
    [19] DULBERGER CL, RUBIN EJ, BOUTTE CC. The mycobacterial cell envelope-a moving target[J]. Nature Reviews Microbiology, 2020, 18(1):47-59.
    [20] VINCENT AT, NYONGESA S, MORNEAU I, REED MB, TOCHEVA EI, VEYRIER FJ. The mycobacterial cell envelope:a relict from the past or the result of recent evolution?[J]. Frontiers in Microbiology, 2018, 9:2341.
    [21] CAI XY, LIU L, QIU CH, WEN CZ, HE Y, CUI YX, LI SY, ZHANG X, ZHANG LH, TIAN CL, BI LJ, ZHOU ZH, GONG WM. Identification and architecture of a putative secretion tube across mycobacterial outer envelope[J]. Science Advances, 2021, 7(34):eabg5656.
    [22] NATARAJ V, VARELA C, JAVID A, SINGH A, BESRA GS, BHATT A. Mycolic acids:deciphering and targeting the Achilles' heel of the tubercle bacillus[J]. Molecular Microbiology, 2015, 98(1):7-16.
    [23] ZUMBO A, PALUCCI I, CASCIOFERRO A, SALI M, VENTURA M, D'ALFONSO P, IANTOMASI R, DI SANTE G, RIA F, SANGUINETTI M, FADDA G, MANGANELLI R, DELOGU G. Functional dissection of protein domains involved in the immunomodulatory properties of PE_PGRS33 of Mycobacterium tuberculosis[J]. Pathogens and Disease, 2013, 69(3):232-239.
    [24] CASCIOFERRO A, DELOGU G, COLONE M, SALI M, STRINGARO A, ARANCIA G, FADDA G, PALÙ G, MANGANELLI R. PE is a functional domain responsible for protein translocation and localization on mycobacterial cell wall[J]. Molecular Microbiology, 2007, 66(6):1536-1547.
    [25] ROHDE KH, VEIGA DFT, CALDWELL S, BALÁZSI G, RUSSELL DG. Linking the transcriptional profiles and the physiological states of Mycobacterium tuberculosis during an extended intracellular infection[J]. PLoS Pathogens, 2012, 8(6):e1002769.
    [26] TALAAT AM, LYONS R, HOWARD ST, JOHNSTON SA. The temporal expression profile of Mycobacterium tuberculosis infection in mice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(13):4602-4607.
    [27] KRUH NA, TROUDT J, IZZO A, PRENNI J, DOBOS KM. Portrait of a pathogen:the Mycobacterium tuberculosis proteome in vivo[J]. PLoS One, 2010, 5(11):e13938.
    [28] DUTTA NK, MEHRA S, DIDIER PJ, ROY CJ, DOYLE LA, ALVAREZ X, RATTERREE M, BE NA, LAMICHHANE G, JAIN SK, LACEY MR, LACKNER AA, KAUSHAL D. Genetic requirements for the survival of tubercle bacilli in primates[J]. The Journal of Infectious Diseases, 2010, 201(11):1743-1752.
    [29] RUSTAD TR, HARRELL MI, LIAO R, SHERMAN DR. The enduring hypoxic response of Mycobacterium tuberculosis[J]. PLoS One, 2008, 3(1):e1502.
    [30] ROHDE KH, ABRAMOVITCH RB, RUSSELL DG. Mycobacterium tuberculosis invasion of macrophages:linking bacterial gene expression to environmental cues[J]. Cell Host & Microbe, 2007, 2(5):352-364.
    [31] FONTÁN PA, VOSKUIL MI, GOMEZ M, TAN D, PARDINI M, MANGANELLI R, FATTORINI L, SCHOOLNIK GK, SMITH I. The Mycobacterium tuberculosis sigma factor sigmaB is required for full response to cell envelope stress and hypoxia in vitro, but it is dispensable for in vivo growth[J]. Journal of Bacteriology, 2009, 191(18):5628-5633.
    [32] DELOGU G, BRENNAN MJ, MANGANELLI R. PE and PPE genes:a tale of conservation and diversity[J]. Advances in Experimental Medicine and Biology, 2017, 1019:191-207.
    [33] MAAN P, KUMAR A, KAUR J, KAUR J. Rv1288, a two domain, cell wall anchored, nutrient stress inducible carboxyl-esterase of Mycobacterium tuberculosis, modulates cell wall lipid[J]. Frontiers in Cellular and Infection Microbiology, 2018, 8:421.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李武,邓磊,阎紫菲,艾雪峰,吕茜,谢建平. 结核分枝杆菌PE_PGRS15调控分枝杆菌细胞包膜结构与耐药性[J]. 微生物学报, 2023, 63(12): 4644-4658

复制
分享
文章指标
  • 点击次数:320
  • 下载次数: 584
  • HTML阅读次数: 592
  • 引用次数: 0
历史
  • 收稿日期:2023-04-20
  • 录用日期:2023-06-28
  • 在线发布日期: 2023-11-29
  • 出版日期: 2023-12-04
文章二维码