一株C3形态多重耐药大肠杆菌噬菌体生物学特性和基因组分析
作者:
基金项目:

优宜邦生物科技(上海)有限公司资助产业化项目(UYB20220001)


Biological characteristics and genome of a C3-morphotype phage against multidrug-resistant Escherichia coli
Author:
  • ZUO Junhao

    ZUO Junhao

    Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China;Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, Guangdong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Xue

    WANG Xue

    Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, Guangdong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZENG Jun

    ZENG Jun

    Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China;Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, Guangdong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Meng

    WANG Meng

    Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, Guangdong, China;College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, Hebei, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • GUO Zhiliang

    GUO Zhiliang

    Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China;Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, Guangdong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • JI Fang

    JI Fang

    Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, Guangdong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • XU Lili

    XU Lili

    Union Biotechnology (Shanghai) Co., Ltd., Shanghai 201103, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WEI Yanwen

    WEI Yanwen

    Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, Guangdong, China;School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Qian

    WANG Qian

    Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, Guangdong, China;School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHAO Ruili

    ZHAO Ruili

    Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Chengmin

    WANG Chengmin

    Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, Guangdong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [46]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】多重耐药菌的出现对公共卫生安全构成严重威胁,本研究分离多重耐药大肠杆菌噬菌体,研究其生物学特性和基因组特征,为耐药菌的噬菌体疗法提供理论依据。【方法】使用双层平板法从污水样本中分离纯化大肠杆菌噬菌体;磷钨酸染色后通过透射电镜观察形态;测定其宿主范围,测定温度和pH稳定性、一步生长曲线和体外抑菌效果等生物学特性;体内抑菌试验评估噬菌体对多重耐药大肠杆菌N1203-1Af感染的大蜡螟幼虫的保护作用;基于全基因组测序对其基因组特点进行分析。【结果】本研究分离共得到5株大肠杆菌噬菌体,分别命名为pEC-S163-2.1、pEC-S163-2.2、pEC-M1167-5Ar.1、pEC-m1291-2Dr.1和pEC-N1203-2Af.1;电镜结果显示噬菌体pEC-N1203-2Af.1属于短尾噬菌体中罕见的C3形态型,头部较长,长是宽的2-3倍;pEC-N1203-2Af.1可裂解受试15株大肠杆菌中的3株;感染10 min后进入指数增长期,-20-50 ℃、pH值为4.0-10.0的环境下均能够保持稳定活性;大蜡螟幼虫感染大肠杆菌N1203-2Af后噬菌体pEC-N1203-2Af.1治疗感染复数(multiplicity of infection, MOI)=100、1和0.01在48 h内存活率均达到70%以上(7/10);噬菌体pEC-N1203-2Af.1基因组全长77 334 bp,(G+C)%含量为42.18%,不携带耐药基因和毒力因子;功能基因预测表明,噬菌体pEC-N1203-2Af.1基因组共有121个CDS,其中CDS53-CDS64是编码噬菌体结构和裂解模块的序列。【结论】多重耐药大肠杆菌噬菌体pEC-N1203-2Af.1具有良好的抑菌活性,生物学特性稳定,可能为Kuravirus属的新成员,其具有罕见的C3形态,这种头部细长的特殊形态可能与CDS63编码的主要头部蛋白有关。不同地区的C3形态噬菌体长尾纤维远端三聚体蛋白一致性小于50%,推测该形态噬菌体为适应不同的环境可能发生了不同方向的进化。

    Abstract:

    [Objective] The emergence of multidrug-resistant bacteria represents a serious challenge to public health security. In this study, we isolated the phages against multidrug-resistant Escherichia coli and studied their biological and genomic features, aiming to provide a theoretical foundation for the development of phage therapies against drug-resistant bacteria. [Methods] We used the double plate method to isolate E. coli phages from sewage. We employed phosphotungstic acid staining and transmission electron microscopy to observe the phage morphology, and subsequently assessed the biological properties, including host range, thermal and pH stability, one-step growth curve, and in vitro antibacterial effect of the phages. Furthermore, we conducted an in vivo bacteriostasis test to evaluate the protective effects of the phages on Galleria mellonella larvae infected with multidrug-resistant E. coli N1203-1Af. Finally, we carried out whole genome sequencing to analyze the genomic characteristics of the phages. [Results] Five E. coli phages (pEC-S163-2.1, pEC-S163-2.2, pEC-M1167-5Ar.1, pEC-m1291-2DR.1, and pEC-N1203-2Af.1) were isolated. The phage pEC-N1203-2Af.1 presented a C3 morphotype rare among short-tailed phages and was characterized by a long head with the length 2–3 times that of the width. Furthermore, pEC-N1203-2Af.1 demonstrated lytic activity against three out of the 15 tested E. coli strains. Ten minutes after infection, the phage entered an exponential growth phase and exhibited stable activity within the temperature range of –20 to 50 ℃ and pH 4.0–10.0. After treatment with pEC-N1203-2Af.1 at the multiplicity of infection (MOI) levels of 100, 1, and 0.01 for 48 h, the survival of G. mellonella larvae infected with E. coli N1203-2Af reached over 70% (7/10). The genome of phage pEC-N1203-2Af.1 had a total length of 77 334 bp and the G+C content of 42.18%. Notably, the phage did not carry any drug resistance gene or virulence factor. Functional gene prediction revealed a total of 121 CDS in the phage genome, with CDS53–CDS64 encoding the phage structure and lysis module. [Conclusion] The phage pEC-N1203-2Af.1 against multidrug-resistant E. coli exhibits potent antibacterial activity and stable biological characteristics. Our findings suggest that pEC-N1203-2Af.1 may represent a new member of the Kuravirus genus, characterized by a rare C3 morphotype that may be attributed to the main head protein encoded by CDS63. Notably, the distal trimeric protein of bacteriophages with a C3 morphotype exhibits less than 50% consistency across different regions, which indicates that the bacteriophages with this morphotype may have evolved in diverse directions to adapt to varying environmental conditions.

    参考文献
    [1] ALLOCATI N, MASULLI M, ALEXEYEV MF, Di ILIO C. Escherichia coli in Europe:an overview[J]. International Journal of Environmental Research and Public Health, 2013, 10(12):6235-6254.
    [2] ALIZADE H. Escherichia coli in Iran:an overview of antibiotic resistance:a review article[J]. Iranian Journal of Public Health, 2018, 47:1-12.
    [3] WEINER LM, Webb AK, LIMBAGO B, DUDECK MA, PATEL J, KALLEN AJ, EDWARDS JR, SIEVERT DM. Antimicrobial-resistant pathogens associated with healthcare-associated infections:summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011-2014[J]. Infection Control and Hospital Epidemiology, 2016, 37(11):1288-1301.
    [4] 胡付品, 郭燕, 朱德妹, 汪复, 蒋晓飞, 徐英春, 张小江, 张朝霞, 季萍, 谢轶, 康梅, 王传清, 王爱敏, 徐元宏, 黄颖, 孙自镛, 陈中举, 倪语星, 孙景勇, 褚云卓, 等. 2021年CHINET中国细菌耐药监测[J]. 中国感染与化疗杂志, 2022, 22(5):521-530. HU FP, GUO Y, ZHU DM, WANG F, JIANG XF, XU YC, ZHANG XJ, ZHANG ZX, JI P, XIE Y, KANG M, WANG CQ, WANG AM, XU YH, HUANG Y, SUN ZY, CHEN ZJ, NI YX, SUN JY, CHU YZ, et al. CHINET surveillance of antimicrobial resistance among the bacterial isolates in 2021[J]. Chinese Journal of Infection and Chemotherapy, 2022, 22(5):521-530(in Chinese).
    [5] LEDDA A, CUMMINS M, SHAW LP, JAUNEIKAITE E, COLE K, LASALLE F, BARRY D, TURTON J, ROSMARIN C, ANARAKI S, WAREHAM D, STOESSER N, PAUL J, MANUEL R, CHERIAN BP, DIDELOT X. Hospital outbreak of carbapenem-resistant enterobacterales associated with a bla OXA-48 plasmid carried mostly by Escherichia coli ST399[J]. Microbial Genomics, 2022, 8(4):000675.
    [6] LI Y, SUN QL, SHEN YB, ZHANG Y, YANG JW, SHU LB, ZHOU HW, WANG Y, WANG B, ZHANG R, WANG SL, SHEN ZQ. Rapid increase in prevalence of carbapenem-resistant enterobacteriaceae (CRE) and emergence of colistin resistance gene mcr-1 in CRE in a hospital in Henan, China[J]. Journal of Clinical Microbiology, 2018, 56(4):e01932-e01917.
    [7] SALAZAR KC, MA L, GREEN SI, ZULK JJ, TRAUTNER BW, RAMIG RF, CLARK JR, TERWILLIGER AL, MARESSO AW. Antiviral resistance and phage counter adaptation to antibiotic-resistant extraintestinal pathogenic Escherichia coli[J]. mBio, 2021, 12(2):e00211-e00221.
    [8] HATFULL GF, DEDRICK RM, SCHOOLEY RT. Phage therapy for antibiotic-resistant bacterial infections[J]. Annual Review of Medicine, 2022, 73:197-211.
    [9] DION MB, OECHSLIN F, MOINEAU S. Phage diversity, genomics and phylogeny[J]. Nature Reviews Microbiology, 2020, 18(3):125-138.
    [10] SIMMONDS P, AIEWSAKUN P. Virus classification-where do you draw the line?[J].Archives of Virology, 2018, 163(8):2037-2046.
    [11] ACKERMANN H-W. 5500 Phages examined in the electron microscope[J]. Archives of Virology, 2007, 152(2):227-243.
    [12] BARYLSKI J, ENAULT F, DUTILH BE, SCHULLER MB, EDWARDS RA, GILLIS A, KLUMPP J, KNEZEVIC P, KRUPOVIC M, KUHN JH, LAVIGNE R, OKSANEN HM, SULLIVAN MB, BIN JANG H, SIMMONDS P, AIEWSAKUN P, WITTMANN J, TOLSTOY I, BRISTER JR, KROPINSKI AM, et al. Analysis of spounaviruses as a case study for the overdue reclassification of tailed phages[J]. Systematic Biology, 2020, 69(1):110-123.
    [13] SAVALIA D, WESTBLADE LF, GOEL M, FLORENS L, KEMP P, AKULENKO N, PAVLOVA O, PADOVAN JC, CHAIT BT, WASHBURN MP, ACKERMANN HW, MUSHEGIAN A, GABISONIA T, MOLINEUX I, SEVERINOV K. Genomic and proteomic analysis of phiEco32, a novel Escherichia coli bacteriophage[J]. Journal of Molecular Biology, 2008, 377(3):774-789.
    [14] LI YZ, CHEN MM, TANG F, YAO HC, LU CP, ZHANG W. Complete genome sequence of the novel lytic avian pathogenic coliphage NJ01[J]. Journal of Virology, 2012, 86(24):13874-13875.
    [15] LAVYSH D, MEKLER V, KLIMUK E, SEVERINOV K. Regulation of gene expression of phiEco32-like bacteriophage 7-11[J]. Viruses, 2022, 14(3):555.
    [16] CHOPIN A, DEVEAU H, EHRLICH SD, MOINEAU S, CHOPIN MC. KSY1, a lactococcal phage with a T7-like transcription[J]. Virology, 2007, 365(1):1-9.
    [17] CHEN L, LIU Q, FAN JQ, YAN TW, ZHANG HR, YANG JF, DENG D, LIU CL, WEI T, MA YF. Characterization and genomic analysis of ValSw3-3, a new Siphoviridae bacteriophage infecting Vibrio alginolyticus[J]. Journal of Virology, 2020, 94(10):e00066- e00020.
    [18] SOFY AR, EL-DOUGDOUG NK, REFAEY EE, DAWOUD RA, HMED AA. Characterization and full genome sequence of novel KPP-5 lytic phage against Klebsiella pneumoniae responsible for recalcitrant infection[J]. Biomedicines, 2021, 9(4):342.
    [19] ESTRADA BONILLA B, COSTA AR, van den BERG DF, van ROSSUM T, HAGEDOORN S, WALINGA H, XIAO MF, SONG WC, HAAS PJ, NOBREGA FL, BROUNS SJJ. Genomic characterization of four novel bacteriophages infecting the clinical pathogen Klebsiella pneumoniae[J]. DNA Research, 2021, 28(4):dsab013.
    [20] PU MF, HAN PJ, ZHANG GY, LIU YC, LI YH, LI F, LI MZ, AN XP, SONG LH, CHEN YM, FAN HH, TONG YG. Characterization and comparative genomics analysis of a new bacteriophage BUCT610 against Klebsiella pneumoniae and efficacy assessment in Galleria mellonella larvae[J]. International Journal of Molecular Sciences, 2022, 23(14):8040.
    [21] MEIER-KOLTHOFF JP, GÖKER M. VICTOR:genome-based phylogeny and classification of prokaryotic viruses[J]. Bioinformatics, 2017, 33(21):3396-3404.
    [22] ACKERMANN H-W. Frequency of morphological phage descriptions in the year 2000[J]. Archives of Virology, 2001, 146(5):843-857.
    [23] ADRIAENSSENS E, BRISTER JR. How to Name and classify your phage:an informal guide[J]. Viruses, 2017, 9(4):70.
    [24] DÍAZ-MUÑOZ SL, KOSKELLA B. Bacteria-phage interactions in natural environments[J]. Advances in Applied Microbiology, 2014, 89:135-183.
    [25] KORTRIGHT KE, CHAN BK, KOFF JL, TURNER PE. Phage therapy:a renewed approach to combat antibiotic-resistant bacteria[J]. Cell Host & Microbe, 2019, 25(2):219-232.
    [26] MUNSON-MCGEE J, SNYDER J, YOUNG M. Archaeal viruses from high-temperature environments[J]. Genes, 2018, 9(3):128.
    [27] KADOWAKI KI, SHIBATA T, TAKEUCHI K, HIMENO M, SAKAI H, KOMANO T. Identification of a temperature-resistant bacteriophage X174 mutant[J]. Journal of General Virology, 1987, 68(9):2443-2447.
    [28] LEE KH, MILLER CR, NAGEL AC, WICHMAN HA, JOYCE P, YTREBERG FM. First-step mutations for adaptation at elevated temperature increase capsid stability in a virus[J]. PLoS One, 2011, 6(9):e25640.
    [29] GORDILLO ALTAMIRANO F, FORSYTH JH, PATWA R, KOSTOULIAS X, TRIM M, SUBEDI D, ARCHER SK, MORRIS FC, OLIVEIRA C, KIELTY L, KORNEEV D, O'BRYAN MK, LITHGOW TJ, PELEG AY, BARR JJ. Bacteriophage-resistant Acinetobacter baumannii are resensitized to antimicrobials[J]. Nature Microbiology, 2021, 6(2):157-161.
    [30] CHAPMAN-MCQUISTON E, WU XL. Stochastic receptor expression allows sensitive bacteria to evade phage attack. Part I:experiments[J]. Biophysical Journal, 2008, 94(11):4525-4536.
    [31] BURMEISTER AR, FORTIER A, ROUSH C, LESSING AJ, BENDER RG, BARAHMAN R, GRANT R, CHAN BK, TURNER PE. Pleiotropy complicates a trade-off between phage resistance and antibiotic resistance[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(21):11207-11216.
    [32] RIEDE I, ESCHBACH ML. Evidence that TraT interacts with OmpA of Escherichia coli[J]. FEBS Letters, 1986, 205(2):241-245.
    [33] TOCK MR, DRYDEN DT. The biology of restriction and anti-restriction[J]. Current Opinion in Microbiology, 2005, 8(4):466-472.
    [34] PEDRUZZI I, ROSENBUSCH JP, LOCHER KP. Inactivation in vitro of the Escherichia coli outer membrane protein FhuA by a phage T5-encoded lipoprotein[J]. FEMS Microbiology Letters, 1998, 168(1):119-125.
    [35] LIU D, van BELLEGHEM JD, de VRIES CR, BURGENER E, CHEN QQ, MANASHEROB R, ARONSON JR, AMANATULLAH DF, TAMMA PD, SUH GA. The safety and toxicity of phage therapy:a review of animal and clinical studies[J]. Viruses, 2021, 13(7):1268.
    [36] WINTACHAI P, NAKNAEN A, THAMMAPHET J, POMWISED R, PHAONAKROP N, ROYTRAKUL S, SMITH DR. Characterization of extended-spectrum-β-lactamase producing Klebsiella pneumoniae phage KP1801 and evaluation of therapeutic efficacy in vitro and in vivo[J]. Scientific Reports, 2020, 10:11803.
    [37] TSAI CJY, LOH JMS, PROFT T. Galleria mellonella infection models for the study of bacterial diseases and for antimicrobial drug testing[J]. Virulence, 2016, 7(3):214-229.
    [38] CHANG JR, POLIAKOV A, PREVELIGE PE, MOBLEY JA, DOKLAND T. Incorporation of scaffolding protein gpO in bacteriophages P2 and P4[J]. Virology, 2008, 370(2):352-361.
    [39] TAVARES P. The bacteriophage head-to-tail interface[M]//Subcellular Biochemistry. Singapore:Springer Singapore, 2018:305-328.
    [40] AUZAT I, PETITPAS I, LURZ R, WEISE F, TAVARES P. A touch of glue to complete bacteriophage assembly:the tail-to-head joining protein (THJP) family[J]. Molecular Microbiology, 2014, 91(6):1164-1178.
    [41] NOBREGA FL, VLOT M, de JONGE PA, DREESENS LL, BEAUMONT HJE, LAVIGNE R, DUTILH BE, BROUNS SJJ. Targeting mechanisms of tailed bacteriophages[J]. Nature Reviews Microbiology, 2018, 16(12):760-773.
    [42] CASJENS SR, MOLINEUX IJ. Short noncontractile tail machines:adsorption and DNA delivery by podoviruses[M]//Viral Molecular Machines. Boston, MA:Springer US, 2011:143-179.
    [43] ŠIBOROVÁ M, FÜZIK T, PROCHÁZKOVÁ M, NOVÁČEK J, BENEŠÍK M, NILSSON AS, PLEVKA P. Tail proteins of phage SU10 reorganize into the nozzle for genome delivery[J]. Nature Communications, 2022, 13:5622.
    [44] REDDY BL, SAIER MH Jr. Topological and phylogenetic analyses of bacterial holin families and superfamilies[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2013, 1828(11):2654-2671.
    [45] CAHILL J, YOUNG R. Phage lysis:multiple genes for multiple barriers[J]. Advances in Virus Research, 2019, 103:33-70.
    [46] KHAN MIRZAEI M, ERIKSSON H, KASUGA K, HAGGÅRD-LJUNGQUIST E, NILSSON AS. Genomic, proteomic, morphological, and phylogenetic analyses of vB_EcoP_SU10, a Podoviridae phage with C3 morphology[J]. PLoS One, 2014, 9(12):e116294.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

左君豪,王雪,曾君,王猛,郭志良,季芳,徐莉莉,韦燕文,王倩,赵瑞利,王承民. 一株C3形态多重耐药大肠杆菌噬菌体生物学特性和基因组分析[J]. 微生物学报, 2023, 63(12): 4752-4768

复制
分享
文章指标
  • 点击次数:208
  • 下载次数: 672
  • HTML阅读次数: 502
  • 引用次数: 0
历史
  • 收稿日期:2023-05-05
  • 录用日期:2023-07-25
  • 在线发布日期: 2023-11-29
  • 出版日期: 2023-12-04
文章二维码