耐镉促生缺陷短波单胞菌Y01Z的分离与表征
作者:
基金项目:

国家重点研发计划(201910701003011);中国博士后科学基金(2020M672433);省部共建生物催化与酶工程国家重点实验室开放课题基金


Isolation and characterization of a cadmium-tolerant and plant growth-promoting bacterium, Brevundimonas diminuta Y01Z
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】本研究旨在从湖北地区镉污染严重的水稻根际土壤中,分离并鉴定能耐受高浓度的镉离子,同时具有镉去除能力和促进植物生长的细菌。【方法】采用稀释涂布平板和镉浓度梯度驯化的方法,成功分离出一株最高可耐受700 mg/L CdCl2且稳定生长的菌株,命名为Y01Z,并结合形态学、生理生化和分子生物学等方法对其进行鉴定。【结果】结果显示该菌株属于缺陷短波单胞菌(Brevundimonas diminuta),其最适生长条件为pH值7.0、温度30 °C、NaCl浓度0.5%。扫描电镜和透射电镜分析显示,Y01Z通过拉长细胞尺寸以确保在高浓度镉处理下的生存和繁殖,同时能吸附镉离子,并将其输送到细胞内沉积。傅里叶变换红外光谱分析显示,Cd2+与细菌表面羧基、羟基、羰基和酰胺等官能团结合。经过104 h的培养,Y01Z菌株能够去除高达75%的总添加镉,从300 mg/L降至74.73 mg/L。此外,该菌株还具有促进植物生长的功能,如溶解磷,产生铵态氮和吲哚乙酸,并含有嗜铁载体等物质。【结论】本研究探讨了缺陷短波单胞菌Y01Z在耐镉、植物促生方面的性质,以及在修复镉污染土壤方面的应用前景。本研究为深入探究根际微生物与植物之间的互作关系,并开发高效的镉修复菌剂和绿色农业提供了理论依据。

    Abstract:

    [Objective] This study aims to isolate and characterize the bacteria with tolerance to cadmium ions and the abilities to remove cadmium and promote plant growth from the rice rhizosphere soil in Hubei province, China. [Methods] Using the dilution-plate spreading and gradient domestication methods with cadmium concentration gradients, we isolated a bacterial strain named Y01Z, which demonstrated stable growth and could tolerate 700 mg/L CdCl2. The strain was then identified based on morphological, physiological, biochemical, and molecular biological characteristics. [Results] Y01Z was identified as Brevundimonas diminuta, with the optimal growth conditions of pH 7.0, 30 °C, and 0.5% NaCl. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that Y01Z elongated its cells under high cadmium concentrations to ensure survival and reproduction. Moreover, it accumulated cadmium ions and transported them intracellularly. Fourier transform infrared spectroscopy indicated that Cd2+ bound to carboxyl, hydroxyl, carbonyl, and amide functional groups on the cell surface. After 104 hours of cultivation, B. diminuta Y01Z removed 75% of the total added cadmium, reducing the cadmium concentration from 300 mg/L to 74.73 mg/L. Additionally, the bacterium exhibited plant growth-promoting properties, including solubilization of phosphorus, production of amino nitrogen and indole-3-acetic acid, and possession of iron-chelating agents. [Conclusion] The findings suggest that B. diminuta Y01Z has significant potential for rhizobacteria-mediated remediation of cadmium-contaminated soils and the promotion of sustainable agriculture practices.

    参考文献
    [1] GENCHI G, SINICROPI MS, LAURIA G, CAROCCI A, CATALANO A. The effects of cadmium toxicity[J]. International Journal of Environmental Research and Public Health, 2020, 17(11):3782.
    [2] 中华人民共和国生态环境部. 中国生态环境状况公报[R]. 2021.Ministry of Ecological Environment of the People's Republic of China. Bulletin on China's Ecological Environment[R]. 2021(in Chinese).
    [3] SARAN A, IMPERATO V, FERNANDEZ L, GKOREZIS P, D'HAEN J, MERINI LJ, VANGRONSVELD J, THIJS S. Phytostabilization of polluted military soil supported by bioaugmentation with PGP-trace element tolerant bacteria isolated from Helianthus petiolaris[J]. Agronomy, 2020, 10(2):204.
    [4] RIAZ M, KAMRAN M, RIZWAN M, ALI S, PARVEEN A, MALIK Z, WANG XR. Cadmium uptake and translocation:selenium and silicon roles in Cd detoxification for the production of low Cd crops:a critical review[J]. Chemosphere, 2021, 273:129690.
    [5] LI H, LUO N, LI YW, CAI QY, LI HY, MO CH, WONG MH. Cadmium in rice:transport mechanisms, influencing factors, and minimizing measures[J]. Environmental Pollution, 2017, 224:622-630.
    [6] PEERA SHEIKH KULSUM PG, KHANAM R, DAS S, NAYAK AK, TACK FMG, MEERS E, VITHANAGE M, SHAHID M, KUMAR A, CHAKRABORTY S, BHATTACHARYA T, BISWAS JK. A state-of-the-art review on cadmium uptake, toxicity, and tolerance in rice:from physiological response to remediation process[J]. Environmental Research, 2023, 220:115098.
    [7] YAO ZT, LI JH, XIE HH, YU CH. Review on remediation technologies of soil contaminated by heavy metals[J]. Procedia Environmental Sciences, 2012, 16:722-729.
    [8] 孙婕妤, 刘艳秋, 李佰林, 周蕴薇. 植物对镉的耐性机制以及对镉污染土壤修复的研究进展[J]. 江苏农业科学, 2018, 46(7):12-19. SUN JY, LIU YQ, LI BL, ZHOU YW. Research progress on tolerance mechanism of plants to cadmium and remediation of cadmium contaminated soil[J]. Jiangsu Agricultural Sciences, 2018, 46(7):12-19(in Chinese).
    [9] ZHAO XF, LEI M, GU RY. Knowledge mapping of the phytoremediation of cadmium-contaminated soil:a bibliometric analysis from 1994 to 2021[J]. International Journal of Environmental Research and Public Health, 2022, 19(12):6987.
    [10] ABBAS SZ, RAFATULLAH M, HOSSAIN K, ISMAIL N, TAJARUDIN HA, ABDUL KHALIL HS. A review on mechanism and future perspectives of cadmium-resistant bacteria[J]. International Journal of Environmental Science and Technology, 2018, 15(1):243-262.
    [11] ROMAN-PONCE B, REZA-VAZQUEZ DM, GUTIERREZ-PAREDES S, DE HARO-CRUZ MD, MALDONADO-HERNANDEZ J, BAHENA-OSORIO Y, ESTRADA-DE lOS SANTOS P, WANG ET, VASQUEZ-MURRIETA MS. Plant growth-promoting traits in rhizobacteria of heavy metal-resistant plants and their effects on Brassica nigra seed germination[J]. Pedosphere, 2017, 27(3):511-526.
    [12] HALIM MA, RAHMAN MM, MEGHARAJ M, NAIDU R. Cadmium immobilization in the rhizosphere and plant cellular detoxification:role of plant-growth-promoting rhizobacteria as a sustainable solution[J]. Journal of Agricultural and Food Chemistry, 2020, 68(47):13497-13529.
    [13] KUMAR A, KUMARI N, SINGH A, KUMAR D, YADAV DK, VARSHNEY A, SHARMA N. The effect of cadmium tolerant plant growth promoting rhizobacteria on plant growth promotion and phytoremediation:a review[J]. Current Microbiology, 2023, 80(5):1-12.
    [14] HAN YL, WANG R, YANG ZR, ZHAN YH, MA Y, PING SZ, ZHANG LW, LIN M, YAN YL. 1-aminocyclopropane-1-carboxylate deaminase from Pseudomonas stutzeri A1501 facilitates the growth of rice in the presence of salt or heavy metals[J]. Journal of Microbiology and Biotechnology, 2015, 25(7):1119-1128.
    [15] ZHOU JY, LI P, MENG DL, GU YB, ZHENG ZY, YIN HQ, ZHOU QM, LI J. Isolation, characterization and inoculation of Cd tolerant rice endophytes and their impacts on rice under Cd contaminated environment[J]. Environmental Pollution, 2020, 260:113990.
    [16] WANG YL, WANG R, KOU FL, HE LY, SHENG XF. Cadmium-tolerant facultative endophytic Rhizobium larrymoorei S28 reduces cadmium availability and accumulation in rice in cadmium-polluted soil[J]. Environmental Technology & Innovation, 2022, 26:102294.
    [17] 付少委, 楚超群, 黎妮, 宋崇洋, 梁爽, 张超, 王伟平, 杨志伟. 镉污染水稻种子内生细菌的分离及其耐镉性和植物促生性研究[J]. 微生物学报, 2022, 62(4):1536-1548. FU SW, CHU CQ, LI N, SONG CY, LIANG S, ZHANG C, WANG WP, YANG ZW. Isolation of endophytic bacteria from cadmium-contaminated rice seeds and their cadmium tolerance and plant growth-promoting traits[J]. Acta Microbiologica Sinica, 2022, 62(4):1536-1548(in Chinese).
    [18] SINGH N, MARWA N, MISHRA SK, MISHRA J, VERMA PC, RATHAUR S, SINGH N. Brevundimonas diminuta mediated alleviation of arsenic toxicity and plant growth promotion in Oryza sativa L[J]. Ecotoxicology and Environmental Safety, 2016, 125:25-34.
    [19] DONOFRIO R, SAHA R, BESTERVELT L, BAGLEY S. Molecular cloning of Brevundimonas diminuta for efficacy assessment of reverse osmosis devices[J]. Journal of Water and Health, 2012, 10(2):278-287.
    [20] MIRHENDI M, EMTIAZI G, ROGHANIAN R. Production of nano zinc, zinc sulphide and nano complex of magnetite zinc oxide by Brevundimonas diminuta and Pseudomonas stutzeri[J]. IET Nanobiotechnology, 2013, 7(4):135-139.
    [21] ALI A, LI M, SU JF, LI YF, WANG Z, BAI YH, ALI EF, SHAHEEN SM. Brevundimonas diminuta isolated from mines polluted soil immobilized cadmium (Cd2+) and zinc (Zn2+) through calcium carbonate precipitation:microscopic and spectroscopic investigations[J]. Science of the Total Environment, 2022, 813:152668.
    [22] 赫然, 张颖, 王强, 李刚, 王志学, 崔亮, 刘秋云, 李宝健. 利用微波炉和煮沸法快速制备大肠杆菌基因组DNA PCR模板[J]. 中山大学学报(自然科学版), 2004(S1):80-81. HE R, ZHANG Y, WANG Q, LI G, WANG ZX, CUI L, LIU QY, LI BJ. Rapid preparation of PCR templates of genomic DNA from Escherichia coli by using microwave and boiling[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2004(S1):80-81(in Chinese).
    [23] 王婷, 杨升, 陈亚雪, 胡玲玲, 屠琴, 张丽, 刘雪芹, 王行国. 两株茶树内生草螺菌的微生物学特性[J]. 微生物学报, 2014, 54(4):424-432. WANG T, YANG S, CHEN YX, HU LL, TU Q, ZHANG L, LIU XQ, WANG XG. Microbiological properties of two endophytic bacteria isolated from tea (Camellia sinensis L.)[J]. Acta Microbiologica Sinica, 2014, 54(4):424-432(in Chinese)。
    [24] 郑喜清, 邸娜, 张志超, 纪晓贝. 解磷细菌的分离筛选及培养条件优化[J]. 天津农业科学, 2020, 26(3):44-48. ZHENG XQ, DI N, ZHANG ZC, JI XB. Isolation and screening of phosphate-solubilizing strains and optimization of culture conditions[J]. Tianjin Agricultural Sciences, 2020, 26(3):44-48(in Chinese).
    [25] 刘俊清, 金晓雪, 宋科稷, 贾芳, 张建峰. 一株溶磷真菌的筛选及相关促生特性初探[J]. 安徽大学学报(自然科学版), 2023, 47(3):90-97. LIU JQ, JIN XX, SONG KJ, JIA F, ZHANG JF. Screening and identification of a high-efficient phosphate-solubilizing fungus Penicillium decumbens and analysis of its phosphate-solubilizing characteristics[J]. Journal of Anhui University (Natural Science Edition), 2023, 47(3):90-97(in Chinese).
    [26] 彭雯杰, 詹伊婧, 雷鹏, 孙涛, 钱家熠, 徐虹. 阿斯青霉菌XK-12产铁载体特性及其抑菌活性[J]. 江苏农业学报, 2022, 38(1):73-80. PENG WJ, ZHAN YJ, LEI P, SUN T, QIAN JY, XU H. Characteristics of siderophores production by Penicilium asturianum XK-12 and its effect on antibacterial activity[J]. Jiangsu Journal of Agricultural Sciences, 2022, 38(1):73-80(in Chinese).
    [27] SHEN L, CHEN R, WANG JJ, FAN L, CUI LL, ZHANG YJ, CHENG JJ, WU XL, LI JK, ZENG WM. Biosorption behavior and mechanism of cadmium from aqueous solutions by Synechocystis sp. PCC6803[J]. RSC Advances, 2021, 11(30):18637-18650.
    [28] JUSTICE SS, HUNSTAD DA, CEGELSKI L, HULTGREN SJ. Morphological plasticity as a bacterial survival strategy[J]. Nature Reviews Microbiology, 2008, 6(2):162-168.
    [29] RATHI M, YOGALAKSHMI KN. Brevundimonas diminuta MYS6 associated Helianthus annuus L. for enhanced copper phytoremediation[J]. Chemosphere, 2021, 263:128195.
    [30] 杨文玲, 杜志敏, 孙召华, 周伏忠, 安明理, 雷高, 魏传军, 巩涛. 芽孢杆菌在重金属污染土壤修复中的研究进展[J]. 环境污染与防治, 2021, 43(6):759-763. YANG WL, DU ZM, SUN ZH, ZHOU FZ, AN ML, LEI G, WEI CJ, GONG T. Research progress of Bacillus in remediation of heavy metal contaminated soil[J]. Environmental Pollution and Control, 2021, 43(6):759-763(in Chinese).
    [31] 何小三, 王微, 肖清铁, 郑新宇, 郑梅琴, 朱静静, 韩永明, 汪敦飞, 林瑞余, 林文雄. 铜绿假单胞菌对镉胁迫水稻苗期生长与镉积累的影响[J]. 中国生态农业学报, 2018, 26(6):884-891. HE XS, WANG W, XIAO QT, ZHENG XY, ZHENG MQ, ZHU JJ, HAN YM, WANG DF, LIN RY, LIN WX. Effects of Pseudomonas aeruginosa on the growth and cadmium accumulation in rice (Oryza sativa L.) seedling under Cd stress[J]. Chinese Journal of Eco-Agriculture, 2018, 26(6):884-891(in Chinese).
    引证文献
引用本文

张媛,吴叶亮,项德发,肖铭,张献华,李亚东,谢尚潜,喻雪婧. 耐镉促生缺陷短波单胞菌Y01Z的分离与表征[J]. 微生物学报, 2023, 63(12): 4769-4782

复制
分享
文章指标
  • 点击次数:205
  • 下载次数: 664
  • HTML阅读次数: 750
  • 引用次数: 0
历史
  • 收稿日期:2023-05-08
  • 录用日期:2023-07-27
  • 在线发布日期: 2023-11-29
  • 出版日期: 2023-12-04
文章二维码