苏云金杆菌Bt4.0718不同时期比较转录组揭示芽胞和杀虫伴胞晶体形成机制
作者:
基金项目:

国家重点研发计划(2017YFD0201201);国家自然科学基金(31370116)


Comparative transcriptomics of Bacillus thuringiensis Bt4.0718 reveals the mechanisms of sporulation and parasporal crystal formation
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】苏云金芽胞杆菌(Bacillus thuringiensis, Bt)在形成芽胞的过程中产生大量杀虫晶体蛋白(insecticidal crystal proteins, ICPs),是目前应用最广泛、最安全的微生物杀虫剂的主要菌株资源。本研究旨在比较Bt 3个重要时期的转录组,进一步探究芽胞和杀虫伴胞晶体的形成机制,为高效工程菌的构建奠定理论基础。【方法】选取高毒力Bt4.0718菌株营养生长中期(T1-10 h)、芽胞形成前期(T2-20 h)、芽胞形成后期(T3-32 h)进行比较转录组分析,对代表性差异基因进行实时荧光定量PCR (real-time fluorescence quantitative PCR, qRT-PCR)验证、特定功能基因的敲除和表型分析验证。【结果】差异表达基因数量分别为2 147个(T2/T1)、1 861个(T3/T1)、1 708个(T3/T2)。T1时期,培养基中营养相对丰富,主要为芽胞和杀虫伴胞晶体形成做准备。芽胞形成重要调控基因kinA/Dspo0A/FsigE高水平转录对菌体的生长发育具有重要作用,Cry1Ac、碳源、能源贮藏物聚-羟基丁酸(poly-hydroxybutyric acid, PHB)和羟基丁酮(acetoin)也已开始转录。芽胞和ICPs的大量形成在T2和T3时期,相关基因的转录水平T2比T3时期高。T2对比T3时期,芽胞核/衣/皮质(spore core/coat/cortex)、芽胞萌发受体蛋白(germination protein)和芽胞形成的II-VI阶段相关基因(spoII-spoVI)在T2时才开始大量转录,为3个时期的最高水平;相应的糖类、氨基酸、脂质代谢,能量、核酸、多肽代谢、次级产物生成和环境适应系统等复杂网络均表现出差异;另外,作为营养信号刺激性生理过程,双组分信号转导系统(two-component signal transduction system, TCS)和ABC转运系统在芽胞形成和ICPs的转录表达过程中发挥重要作用,转录水平具有显著差异。【结论】随着芽胞和杀虫伴胞晶体的形成,营养成分逐渐匮乏,sigBsigWsigM的高效表达有助维持细胞壁的稳定和对环境变化的抗性;小热激蛋白Hsp20和Hsp20B作为分子伴侣蛋白对维持胞内稳态也十分重要,T2、T3时期高水平转录可能有助于芽胞形成和ICPs表达。

    Abstract:

    [Objective] Bacillus thuringiensis (Bt), characterized by the massive production of insecticidal crystal proteins (ICPs) during sporulation, serves as the main strain resource for the commonly used and safe microbial insecticides. To further explore the mechanisms of sporulation and parasporal crystal formation and lay a theoretical foundation for the construction of efficient strains, we compared the transcriptomes of Bt at three important stages. [Methods] The transcriptomes of the hypervirulent strain Bt4.0718 at the middle vegetative growth stage (T1-10 h), the early sporulation stage (T2-20 h), and the late sporulation stage (T3-32 h) were compared. The representative differentially expressed genes (DEGs) were verified by real-time fluorescence quantitative PCR (qRT-PCR), and the phenotypes of the mutant strains with the knockout of specific functional genes were examined. [Results] The number of DEGs was 2 147 (T2/T1), 1 861 (T3/T1), and 1 708 (T3/T2), respectively. At T1, the medium was rich in nutrients, which served the sporulation and parasporal crystal formation. The high transcription levels of kinA/D, spo0A/F, and sigE regulating sporulation played a role in the growth and development of the cells. The transcription of Cry1Ac, poly-hydroxybutyric acid (PHB), and hydroxybutanone (acetoin) were started at this time. The substantial formation of ICPs and spores occurred at T2 and T3, and the transcript levels of the regulatory genes were higher at T2 than those at T3. The genes associated with spore core/coat/cortex, germination protein, and spoII–spoVI began to be transcribed in large amounts at T2, with the highest levels among the three stages. The corresponding complex networks of carbohydrate, amino acid, and lipid metabolism, energy, nucleic acid, and peptide metabolism, secondary metabolite production, and environmental adaptation showed differences. In addition, as the physiological processes stimulated by nutrient signals, the two-component signal transduction system (TCS) and ABC transport system played an essential role in the process of sporulation and ICP transcription and expression, and their transcription levels were significantly different. [Conclusion] With the production of ICPs and sporulation, nutrients are gradually consumed, and the high expression of sigB, sigW, and sigM contributed to the stability of cell wall and the resistance to environmental changes. Meanwhile, the small heat shock proteins Hsp20 and Hsp20B, as molecular chaperones, were also important for maintaining intracellular homeostasis and may facilitate the sporulation and ICP production.

    参考文献
    [1] JOUZANI GS, VALIJANIAN E, SHARAFI R. Bacillus thuringiensis: a successful insecticide with new environmental features and tidings[J]. Applied Microbiology and Biotechnology, 2017, 101(7): 2691-2711.
    [2] CAO BB, SHU CL, GENG LL, SONG FP, ZHANG J. Cry78Ba1, one novel crystal protein from Bacillus thuringiensis with high insecticidal activity against rice planthopper[J]. Journal of Agricultural and Food Chemistry, 2020, 68(8): 2539-2546.
    [3] ARMADA E, LEITE MFA, MEDINA A, AZCÓN R, KURAMAE EE. Native bacteria promote plant growth under drought stress condition without impacting the rhizomicrobiome[J]. FEMS Microbiology Ecology, 2018, 94(7): fiy092.
    [4] CAO ZL, TAN TT, JIANG K, MEI SQ, HOU XY, CAI J. Complete genome sequence of Bacillus thuringiensis L-7601, a wild strain with high production of melanin[J]. Journal of Biotechnology, 2018, 275: 40-43.
    [5] MOAZAMIAN E, BAHADOR N, AZARPIRA N, RASOULI M. Anti-cancer parasporin toxins of new Bacillus thuringiensis against human colon (HCT-116) and blood (CCRF-CEM) cancer cell lines[J]. Current Microbiology, 2018, 75(8): 1090-1098.
    [6] GRACE JJ, RAMANI G, SHENBAGARATHAI R. Enhancement of purified human colon cancer-specific parasporal toxin from Bacillus thuringiensis-LDC- 501[J]. Current Microbiology, 2020, 77(1): 104-114.
    [7] POORNIMA K, SARANYA V, ABIRAMI P, BINURAMESH C, SUGUNA P, SELVANAYAGAM P, SHENBAGARATHAI R. Phenotypic and genotypic characterization of B.t.LDC-391 strain that produce cytocidal proteins against human cancer cells[J]. Bioinformation, 2012, 8(10): 461-465.
    [8] RAMU SM, THULASINATHAN B, HARI DG, BORA A, JAYABALAN T, MOHAMMED SN, DOBLE M, ARIVALAGAN P, ALAGARSAMY A. Fermentative hydrogen production and bioelectricity generation from food based industrial waste: an integrative approach[J]. Bioresource Technology, 2020, 310: 123447.
    [9] WANG JP, MEI H, ZHENG C, QIAN HL, CUI C, FU Y, SU JM, LIU ZD, YU ZN, HE J. The metabolic regulation of sporulation and parasporal crystal formation in Bacillus thuringiensis revealed by transcriptomics and proteomics[J]. Molecular & Cellular Proteomics, 2013, 12(5): 1363-1376.
    [10] ZHENG C, MA Y, WANG X, XIE YQ, ALI MK, HE J. Functional analysis of the sporulation-specific diadenylate cyclase CdaS in Bacillus thuringiensis[J]. Frontiers in Microbiology, 2015, 6: 908.
    [11] BOHORQUEZ LC, SURDOVA K, JONKER MJ, HAMOEN LW. The conserved DNA binding protein WhiA influences chromosome segregation in Bacillus subtilis[J]. Journal of Bacteriology, 2018, 200(8): e00633-17.
    [12] MURRAY H, ERRINGTON J. Dynamic control of the DNA replication initiation protein DnaA by Soj/ParA[J]. Cell, 2008, 135(1): 74-84.
    [13] QUISEL JD, GROSSMAN AD. Control of sporulation gene expression in Bacillus subtilis by the chromosome partitioning proteins Soj (ParA) and Spo0J (ParB)[J]. Journal of Bacteriology, 2000, 182(12): 3446-3451.
    [14] MCLEOD BN, SPIEGELMAN GB. Soj antagonizes Spo0A activation of transcription in Bacillus subtilis[J]. Journal of Bacteriology, 2005, 187(7): 2532-2536.
    [15] JIANG M, SHAO WL, PEREGO M, HOCH JA. Multiple histidine kinases regulate entry into stationary phase and sporulation in Bacillus subtilis[J]. Molecular Microbiology, 2000, 38(3): 535-542.
    [16] HOSOYA S, ASAI K, OGASAWARA N, TAKEUCHI M, SATO T. Mutation in yaaT leads to significant inhibition of phosphorelay during sporulation in Bacillus subtilis[J]. Journal of Bacteriology, 2002, 184(20): 5545-5553.
    [17] HULETT FM. The signal-transduction network for Pho regulation in Bacillus subtilis[J]. Molecular Microbiology, 1996, 19(5): 933-939.
    [18] JORDAN S, RIETKÖTTER E, STRAUCH MA, KALAMORZ F, BUTCHER BG, HELMANN JD, MASCHER T. LiaRS-dependent gene expression is embedded in transition state regulation in Bacillus subtilis[J]. Microbiology, 2007, 153(8): 2530-2540.
    [19] CHARBONNIER T, Le COQ D, McGOVERN S, CALABRE M, DELUMEAU O, AYMERICH S, JULES M. Molecular and physiological logics of the pyruvate-induced response of a novel transporter in Bacillus subtilis[J]. mBio, 2017, 8(5): e00976-17.
    [20] BARTOLINI M, COGLIATI S, VILETA D, BAUMAN C, RATENI L, LEÑINI C, ARGAÑARAZ F, FRANCISCO M, VILLALBA JM, STEIL L, VÖLKER U, GRAU R. Regulation of biofilm aging and dispersal in Bacillus subtilis by the alternative sigma factor SigB[J]. Journal of Bacteriology, 2018, 201(2): e00473-18.
    [21] DEVKOTA SR, KWON E, HA SC, CHANG HW, KIM DY. Structural insights into the regulation of Bacillus subtilis SigW activity by anti-sigma RsiW[J]. PLoS One, 2017, 12(3): e0174284.
    [22] ZHAO H, ROISTACHER DM, HELMANN JD. Deciphering the essentiality and function of the anti-σM factors in Bacillus subtilis[J]. Molecular Microbiology, 2019, 112(2): 482-497.
    [23] HUANG X, DECATUR A, SOROKIN A, HELMANN JD. The Bacillus subtilis σX protein is an extracytoplasmic function sigma factor contributing to survival at high temperature[J]. Journal of Bacteriology, 1997, 179(9): 2915-2921.
    [24] CAO M, HELMANN JD. The Bacillus subtilis extracytoplasmic-function σX factor regulates modification of the cell envelope and resistance to cationic antimicrobial peptides[J]. Journal of Bacteriology, 2004, 186(4): 1136-1146.
    [25] PENG Q, WANG GN, LIU GM, ZHANG J, SONG FP. Identification of metabolism pathways directly regulated by sigma54 factor in Bacillus thuringiensis[J]. Frontiers in Microbiology, 2015, 6: 407.
    [26] PENG Q, ZHAO X, WEN JL, HUANG MZ, ZHANG J, SONG FP. Transcription in the acetoin catabolic pathway is regulated by AcoR and CcpA in Bacillus thuringiensis[J]. Microbiological Research, 2020, 235: 126438.
    [27] KIHLKEN MA, SINGLETON C, Le BRUN NE. Distinct characteristics of Ag+ and Cd2+ binding to CopZ from Bacillus subtilis[J]. JBIC Journal of Biological Inorganic Chemistry, 2008, 13(6): 1011-1023.
    [28] KIHLKEN MA, LEECH AP, Le BRUN NE. Copper-mediated dimerization of CopZ, a predicted copper chaperone from Bacillus subtilis[J]. Biochemical Journal, 2002, 368(3): 729-739.
    [29] XIE JY, PENG JL, YI ZX, ZHAO XL, LI SM, ZHANG T, QUAN MF, YANG SQ, LU JY, ZHOU PJ, XIA LQ, DING XZ. Role of hsp20 in the production of spores and insecticidal crystal proteins in Bacillus thuringiensis[J]. Frontiers in Microbiology, 2019, 10: 2059.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

谢俊雁,罗斯思,朱梓榕,陈文慧,周客轩,夏立秋,丁学知. 苏云金杆菌Bt4.0718不同时期比较转录组揭示芽胞和杀虫伴胞晶体形成机制[J]. 微生物学报, 2024, 64(1): 108-129

复制
分享
文章指标
  • 点击次数:338
  • 下载次数: 1104
  • HTML阅读次数: 447
  • 引用次数: 0
历史
  • 收稿日期:2023-03-30
  • 最后修改日期:2023-09-27
  • 在线发布日期: 2024-01-04
  • 出版日期: 2024-01-04
文章二维码