基于AlphaFold 2和分子对接探讨非还原型聚酮合酶的碳甲基化程序
作者:
基金项目:

国家自然科学基金(31730068, 31330059)


C-methylation programming of non-reducing polyketide synthases: based on AlphaFold 2 and molecular docking
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [58]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    【目的】探讨非还原型聚酮合酶(non-reducing polyketide synthase, NR-Pks)的碳甲基化程序差异的原因。【方法】以红色红曲菌(Monascus ruber) M7中红曲色素和桔霉素的NR-Pks为研究对象,采用生物信息学方法和AlphaFold 2软件,分析了这两种NR-Pks及其各结构域的序列和结构差异。再基于分子对接等技术,比较了它们的碳甲基转移酶结构域(C-methyltransferase domain, CMeT)分别与其他结构域及其中间产物的结合特征。【结果】两种NR-Pks各结构域的序列和结构相似性高,但其整体结构差异大,表明碳甲基化差异可能源于结构域互作差异。进一步分析发现,桔霉素Pks的CMeT比红曲色素Pks的更容易结合携带底物的酰基载体蛋白结构域(acyl carrier protein, ACP),使其中间产物更容易受到CMeT催化。CMeT和β-酮酰基合成酶结构域(β-ketosynthase domain, KS)相比,与甲基受体底物的结合自由能更低。【结论】NR-Pks中的CMeT能通过与KS竞争,从而影响其产物的碳甲基化程度。研究结果为Pks的碳甲基化程序研究提供了新思路。

    Abstract:

    [Objective] To explore the reasons for differences in the C-methylation programming of non-reducing polyketide synthases (NR-Pkss). [Methods] We used bioinformatics tools and AlphaFold 2 to compare the domain sequences and structures of the NR-Pkss involved in the synthesis of Monascus pigment and citrinin in Monascus ruber M7, i.e., Mr-PksPT and Mr-PksCT. Furthermore, we employed molecular docking to compare the binding of C-methyltransferase domains (CMeTs) with other domains and the intermediates of the two NR-Pkss. [Results] The large differences of the overall structure and the high similarity of domain sequence and structure between the two NR-Pkss suggested that the differences of C-methylation programming between NR-Pkss may be resulted from domain interactions. The CMeT of Mr-PksCT was more likely to bind to the acyl carrier protein (ACP) carrying the substrate than that of Mr-PksPT, making the intermediate more easily catalyzed by CMeT. Moreover, CMeT had lower binding free energy to methyl receptor substrate than the β-ketosynthase domain (KS). [Conclusion] The CMeTs of NR-Pkss can affect the C-methylation of the products by competing with KS. The findings provide a new idea for the study of C-methylation programming of Pkss.

    参考文献
    [1] COX RJ. Polyketides, proteins and genes in fungi: programmed nano-machines begin to reveal their secrets[J]. Organic & Biomolecular Chemistry, 2007, 5(13): 2010-2026.
    [2] CRAWFORD JM, TOWNSEND CA. New insights into the formation of fungal aromatic polyketides[J]. Nature Reviews Microbiology, 2010, 8(12): 879-889.
    [3] CRAWFORD JM, KORMAN TP, LABONTE JW, VAGSTAD AL, HILL EA, KAMARI-BIDKORPEH O, TSAI SC, TOWNSEND CA. Structural basis for biosynthetic programming of fungal aromatic polyketide cyclization[J]. Nature, 2009, 461(7267): 1139-1143.
    [4] NICHOLSON TP, RUDD BAM, DAWSON M, LAZARUS CM, SIMPSON TJ, COX RJ. Design and utility of oligonucleotide gene probes for fungal polyketide synthases[J]. Chemistry & Biology, 2001, 8(2): 157-178.
    [5] CRAWFORD JM, DANCY BCR, HILL EA, UDWARY DW, TOWNSEND CA. Identification of a starter unit acyl-carrier protein transacylase domain in an iterative type I polyketide synthase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(45): 16728-16733.
    [6] FISCH KM, SKELLAM E, IVISON D, COX RJ, BAILEY AM, LAZARUS CM, SIMPSON TJ. Catalytic role of the C-terminal domains of a fungal non-reducing polyketide synthase[J]. Chemical Communications, 2010, 46(29): 5331-5333.
    [7] YEH HH, CHANG SL, CHIANG YM, BRUNO KS, OAKLEY BR, WU TK, WANG CCC. Engineering fungal nonreducing polyketide synthase by heterologous expression and domain swapping[J]. Organic Letters, 2013, 15(4): 756-759.
    [8] BALLESTER AR, MARCET-HOUBEN M, LEVIN E, SELA N, SELMA-LÁZARO C, CARMONA L, WISNIEWSKI M, DROBY S, GONZÁLEZ-CANDELAS L, GABALDÓN T. Genome, transcriptome, and functional analyses of Penicillium expansum provide new insights into secondary metabolism and pathogenicity[J]. Molecular Plant-Microbe Interactions: MPMI, 2015, 28(3): 232-248.
    [9] CHEN WP, CHEN RF, LIU QP, HE Y, HE K, DING XL, KANG LJ, GUO XX, XIE NN, ZHOU YX, LU YY, COX RJ, MOLNáR I, LI M, SHAO YC, CHEN FS. Orange, red, yellow: biosynthesis of azaphilone pigments in Monascus fungi[J]. Chemical Science, 2017, 8(7): 4917-4925.
    [10] HE Y, COX RJ. The molecular steps of citrinin biosynthesis in fungi[J]. Chemical Science, 2016, 7(3): 2119-2127.
    [11] MAPARI SAS, HANSEN ME, MEYER AS, THRANE U. Computerized screening for novel producers of Monascus-like food pigments in Penicillium species[J]. Journal of Agricultural and Food Chemistry, 2008, 56(21): 9981-9989.
    [12] PAVESI C, FLON V, MANN S, LELEU S, PRADO S, FRANCK X. Biosynthesis of azaphilones: a review[J]. Natural Product Reports, 2021, 38(6): 1058-1071.
    [13] WILLIAMS K, GRECO C, BAILEY AM, WILLIS CL. Core steps to the azaphilone family of fungal natural products[J]. ChemBioChem, 2021, 22(21): 3027-3036.
    [14] CHEN WP, FENG YL, MOLNáR I, CHEN FS. Nature and nurture: confluence of pathway determinism with metabolic and chemical serendipity diversifies Monascus azaphilone pigments[J]. Natural Product Reports, 2019, 36(4): 561-572.
    [15] LISCOMBE DK, LOUIE GV, NOEL JP. Architectures, mechanisms and molecular evolution of natural product methyltransferases[J]. Natural Product Reports, 2012, 29(10): 1238-1250.
    [16] LI PW, CHEN M, TANG W, GUO ZY, ZHANG YW, WANG M, HORSMAN GP, ZHONG J, LU ZX, CHEN YH. Initiating polyketide biosynthesis by on-line methyl esterification[J]. Nature Communications, 2021, 12: 4499.
    [17] STORM PA, HERBST DA, MAIER T, TOWNSEND CA. Functional and structural analysis of programmed C-methylation in the biosynthesis of the fungal polyketide citrinin[J]. Cell Chemical Biology, 2017, 24(3): 316-325.
    [18] STORM PA, PAL P, HUITT-ROEHL CR, TOWNSEND CA. Exploring fungal polyketide C-methylation through combinatorial domain swaps[J]. ACS Chemical Biology, 2018, 13(11): 3043-3048.
    [19] CACHO RA, THUSS J, XU W, SANICHAR R, GAO ZZ, NGUYEN A, VEDERAS JC, TANG Y. Understanding programming of fungal iterative polyketide synthases: the biochemical basis for regioselectivity by the methyltransferase domain in the lovastatin megasynthase[J]. Journal of the American Chemical Society, 2015, 137(50): 15688-15691.
    [20] THORP HH. Proteins, proteins everywhere[J]. Science, 2021, 374(6574): 1415.
    [21] JUMPER J, EVANS R, PRITZEL A, GREEN T, FIGURNOV M, RONNEBERGER O, TUNYASUVUNAKOOL K, BATES R, ŽÍDEK A, POTAPENKO A, BRIDGLAND A, MEYER C, KOHL SAA, BALLARD AJ, COWIE A, ROMERA-PAREDES B, NIKOLOV S, JAIN R, ADLER J, BACK T, et al. Highly accurate protein structure prediction with AlphaFold[J]. Nature, 2021, 596(7873): 583-589.
    [22] VARADI M, ANYANGO S, DESHPANDE M, NAIR S, NATASSIA C, YORDANOVA G, YUAN D, STROE O, WOOD G, LAYDON A, ŽÍDEK A, GREEN T, TUNYASUVUNAKOOL K, PETERSEN S, JUMPER J, CLANCY E, GREEN R, VORA A, LUTFI M, FIGURNOV M, et al. AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models[J]. Nucleic Acids Research, 2022, 50(D1): D439-D444.
    [23] ALONSO H, BLIZNYUK AA, GREADY JE. Combining docking and molecular dynamic simulations in drug design[J]. Medicinal Research Reviews, 2006, 26(5): 531-568.
    [24] FU X, ZAN XY, SUN L, TAN M, CUI FJ, LIANG YY, MENG LJ, SUN WJ. Functional characterization and structural basis of the β-1,3-glucan synthase CMGLS from mushroom Cordyceps militaris[J]. Journal of Agricultural and Food Chemistry, 2022, 70(28): 8725-8737.
    [25] GAO W, ZHANG Y, CHEN L, LIU XY, LI K, HAN LJ, YU ZW, REN JZ, TANG LF, FAN ZJ. Novel[1,2,4]-triazolo[3,4-b]-[1,3,4]thiadizoles as potent pyruvate kinase inhibitors for fungal control[J]. Journal of Agricultural and Food Chemistry, 2022, 70(33): 10170-10181.
    [26] KRZEMIŃSKA A, KWIATOS N, ARENHART SOARES F, STEINBÜCHEL A. Theoretical studies of cyanophycin dipeptides as inhibitors of tyrosinases[J]. International Journal of Molecular Sciences, 2022, 23(6): 3335.
    [27] ZHAI GQ, ZHANG ZY, DONG CJ. Mutagenesis and functional analysis of SotB: a multidrug transporter of the major facilitator superfamily from Escherichia coli[J]. Frontiers in Microbiology, 2022, 13: 1024639.
    [28] KUMAR S, STECHER G, TAMURA K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 2016, 33(7): 1870-1874.
    [29] PAYSAN-LAFOSSE T, BLUM M, CHUGURANSKY S, GREGO T, PINTO BL, SALAZAR GA, BILESCHI ML, BORK P, BRIDGE A, COLWELL L, GOUGH J, HAFT DH, LETUNIĆ I, MARCHLER-BAUER A, MI HY, NATALE DA, ORENGO CA, PANDURANGAN AP, RIVOIRE C, SIGRIST CJA, et al. InterPro in 2022[J]. Nucleic Acids Research, 2023, 51(D1): D418-D427.
    [30] KEARSE M, MOIR R, WILSON A, STONES-HAVAS S, CHEUNG M, STURROCK S, BUXTON S, COOPER A, MARKOWITZ S, DURAN C, THIERER T, ASHTON B, MEINTJES P, DRUMMOND A. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data[J]. Bioinformatics, 2012, 28(12): 1647-1649.
    [31] PIERCE BG, WIEHE K, HWANG H, KIM BH, VREVEN T, WENG ZP. ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers[J]. Bioinformatics, 2014, 30(12): 1771-1773.
    [32] VANGONE A, BONVIN AM. Contacts-based prediction of binding affinity in protein-protein complexes[J]. eLife, 2015, 4: e07454.
    [33] WOO PCY, LAM CW, TAM EWT, LEE KC, YUNG KKY, LEUNG CKF, SZE KH, LAU SKP, YUEN KY. The biosynthetic pathway for a thousand-year-old natural food colorant and citrinin in Penicillium marneffei[J]. Scientific Reports, 2014, 4: 6728.
    [34] SHARMA D, GUPTA C, AGGARWAL S, NAGPAL N. Pigment extraction from fungus for textile dyeing[J]. Indian Journal of Fibre & Textile Research, 2012, 37(1): 68-73.
    [35] CAMARDO LEGGIERI M, DECONTARDI S, BERTUZZI T, PIETRI A, BATTILANI P. Modeling growth and toxin production of toxigenic fungi signaled in cheese under different temperature and water activity regimes[J]. Toxins, 2016, 9(1): 4.
    [36] SHIMIZU T, KINOSHITA H, ISHIHARA S, SAKAI K, NAGAI S, NIHIRA T. Polyketide synthase gene responsible for citrinin biosynthesis in Monascus purpureus[J]. Applied and Environmental Microbiology, 2005, 71(7): 3453-3457.
    [37] NEWMAN AG, VAGSTAD AL, STORM PA, TOWNSEND CA. Systematic domain swaps of iterative, nonreducing polyketide synthases provide a mechanistic understanding and rationale for catalytic reprogramming[J]. Journal of the American Chemical Society, 2014, 136(20): 7348-7362.
    [38] WINTER JM, CASCIO D, DIETRICH D, SATO M, WATANABE K, SAWAYA MR, VEDERAS JC, TANG Y. Biochemical and structural basis for controlling chemical modularity in fungal polyketide biosynthesis[J]. Journal of the American Chemical Society, 2015, 137(31): 9885-9893.
    [39] BHETARIYA PJ, PRAJAPATI M, BHADURI A, MANDAL RS, VARMA A, MADAN T, SINGH Y, SARMA PU. Phylogenetic and structural analysis of polyketide synthases in Aspergilli[J]. Evolutionary Bioinformatics Online, 2016, 12: 109-119.
    [40] POUST S, YOON I, ADAMS PD, KATZ L, PETZOLD CJ, KEASLING JD. Understanding the role of histidine in the GHSxG acyltransferase active site motif: evidence for histidine stabilization of the malonyl-enzyme intermediate[J]. PLoS One, 2014, 9(10): e109421.
    [41] LIU L, ZHANG Z, SHAO CL, WANG JL, BAI H, WANG CY. Bioinformatical analysis of the sequences, structures and functions of fungal polyketide synthase product template domains[J]. Scientific Reports, 2015, 5: 10463.
    [42] WATTANA-AMORN P, WILLIAMS C, PŁOSKOŃ E, COX RJ, SIMPSON TJ, CROSBY J, CRUMP MP. Solution structure of an acyl carrier protein domain from a fungal type I polyketide synthase[J]. Biochemistry, 2010, 49(10): 2186-2193.
    [43] WEISSMAN KJ, HONG H, POPOVIC B, MEERSMAN F. Evidence for a protein-protein interaction motif on an acyl carrier protein domain from a modular polyketide synthase[J]. Chemistry & Biology, 2006, 13(6): 625-636.
    [44] KOZBIAL PZ, MUSHEGIAN AR. Natural history of S-adenosylmethionine-binding proteins[J]. BMC Structural Biology, 2005, 5(1): 1-26.
    [45] LIU H, BEGLEY T. Comprehensive Natural Products Ⅲ: Chemistry and Biology[M]. Third Edition. United States of America: Elsevier, 2020.
    [46] GAITATZIS N, KUNZE B, MÜLLER R. In vitro reconstitution of the myxochelin biosynthetic machinery of Stigmatella aurantiaca Sg a15: biochemical characterization of a reductive release mechanism from nonribosomal peptide synthetases[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(20): 11136-11141.
    [47] STARK A, SUNYAEV S, RUSSELL RB. A model for statistical significance of local similarities in structure[J]. Journal of Molecular Biology, 2003, 326(5): 1307-1316.
    [48] YANG XL, FRIEDRICH S, YIN S, PIECH O, WILLIAMS K, SIMPSON TJ, COX RJ. Molecular basis of methylation and chain-length programming in a fungal iterative highly reducing polyketide synthase[J]. Chemical Science, 2019, 10(36): 8478-8489.
    [49] KASTRITIS PL, RODRIGUES JPGLM, FOLKERS GE, BOELENS R, BONVIN AMJJ. Proteins feel more than they see: fine-tuning of binding affinity by properties of the non-interacting surface[J]. Journal of Molecular Biology, 2014, 426(14): 2632-2652.
    [50] JANIN J, HENRICK K, MOULT J, TEN EYCK L, STERNBERG MJE, VAJDA S, VAKSER I, WODAK SJ. CAPRI: a critical assessment of predicted interactions[J]. Proteins: Structure, Function, and Genetics, 2003, 52(1): 2-9.
    [51] BLUNDELL TL, FERNÁNDEZ-RECIO J. Brief encounters bolster contacts[J]. Nature, 2006, 444(7117): 279-280.
    [52] MORRIS CJ, DELLA CORTE D. Using molecular docking and molecular dynamics to investigate protein-ligand interactions[J]. Modern Physics Letters B, 2021, 35(8): 2130002.
    [53] PENG Y, SARTINI D, POZZI V, WILK D, EMANUELLI M, YEE VC. Structural basis of substrate recognition in human nicotinamide N-methyltransferase[J]. Biochemistry, 2011, 50(36): 7800-7808.
    [54] GENHEDEN S, RYDE U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities[J]. Expert Opinion on Drug Discovery, 2015, 10(5): 449-461.
    [55] SCHÖNING-STIERAND K, DIEDRICH K, FÄHRROLFES R, FLACHSENBERG F, MEYDER A, NITTINGER E, STEINEGGER R, RAREY M. ProteinsPlus: interactive analysis of protein-ligand binding interfaces[J]. Nucleic Acids Research, 2020, 48(W1): W48-W53.
    [56] KISHIMOTO S, TSUNEMATSU Y, MATSUSHITA T, HARA K, HASHIMOTO H, TANG Y, WATANABE K. Functional and structural analyses of trans C-methyltransferase in fungal polyketide biosynthesis[J]. Biochemistry, 2019, 58(38): 3933-3937.
    [57] YAN JJ, LIU FQ, GUAN ZY, YAN XH, JIN XH, WANG Q, WANG ZC, YAN JJ, ZHANG DL, LIU Z, WU S, YIN P. Structural insights into DNA N6-adenine methylation by the MTA1 complex[J]. Cell Discovery, 2023, 9: 8.
    [58] ZHANG YX, ALSHAMMARI E, SOBOTA J, YANG A, LI CY, YANG Z. Unique SMYD5 structure revealed by AlphaFold correlates with its functional divergence[J]. Biomolecules, 2022, 12(6): 783.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

廖世玉,刘庆培,陈福生. 基于AlphaFold 2和分子对接探讨非还原型聚酮合酶的碳甲基化程序[J]. 微生物学报, 2024, 64(1): 143-160

复制
分享
文章指标
  • 点击次数:204
  • 下载次数: 1001
  • HTML阅读次数: 419
  • 引用次数: 0
历史
  • 收稿日期:2023-05-13
  • 最后修改日期:2023-08-28
  • 在线发布日期: 2024-01-04
  • 出版日期: 2024-01-04
文章二维码