南沙链霉菌来源细胞色素P450酶CYP154C34的表征及生物转化
作者:
基金项目:

浙江省自然科学基金(LGJ20C010001);浙江理工大学科研启动基金(18042236-Y)


Characterization and biotransformation of cytochrome P450 CYP154C34 from Streptomyces nanshensis
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】P450酶作为一种多功能生物催化剂,可在温和条件下高区域和立体选择性地催化复杂化合物中未活化的C-H键,因此P450酶在化工原料合成、环境污染物降解及药物合成等领域都具有重要作用。本文对南沙链霉菌基因组中的一个新颖的P450酶CYP154C34进行研究,通过构建异源表达和全细胞生物转化重组菌探究其功能。【方法】构建2种全细胞生物转化BL21(DE3)重组菌(含pET28a-CYP154C34-RhFRED和pET28a-CYP154C34+pACYCDuet-Pdx/PdR)和1种异源表达BL21(DE3)重组菌(含pET28a-CYP154C34)。通过全细胞生物转化的方式筛选底物,分析催化功能及产物结构。比较2种全细胞生物转化重组菌和体外酶反应对底物的转化率。分析CYP154C34和不同底物及底物类似物的亲和力。【结果】通过底物筛选和产物鉴定发现CYP154C34可催化包括孕酮、睾酮、雄烯二酮在内的9种甾体化合物16α位羟基化。通过2种不同还原伴侣的全细胞体系及体外酶反应对底物转化率的比较,发现含有pET28a-CYP154C34-RhFRED的BL21(DE3)重组菌的转化率最高,可对孕酮、睾酮、雄烯二酮等7种底物实现超过90%的转化率。通过亲和力分析发现CYP154C34对底物化合物的亲和力比类似物高。【结论】本研究构建了2种CYP154C34的全细胞生物转化重组菌并鉴定其功能。CYP154C34催化的底物谱宽并且具有极高的区域和立体选择性及较高的转化率,具有良好的工业应用前景。

    Abstract:

    [Objective] Cytochrome P450 can catalyze the oxidation of unactivated C-H bonds in complex compounds with high regio- and stereoselectivity under mild conditions. They are multifunctional biocatalysts which play important roles in the synthesis of chemical raw materials, the degradation of environmental pollutants, and drug synthesis. This paper probed into the functions of a novel cytochrome P450 enzyme named CYP154C34 from Streptomyces nanshensis by heterologous expression and whole-cell biotransformation. [Methods] We constructed two recombinant BL21(DE3) strains for whole-cell biotransformation harboring pET28a-CYP154C34-RhFRED and pET28a-CYP154C34+pACYCDuet-Pdx/PdR, respectively. Additionally, we generated a recombinant BL21(DE3) strain for heterologous expression containing pET28a-CYP154C34. We employed whole-cell biotransformation to screen the substrates and analyzed product structures using standard methods. We then compared the substrate conversion rates of the two strains of whole-cell biotransformation with those of enzyme reactions. Finally, we analyzed the substrate affinity and analogues of CYP154C34.[Results] Nine steroids hydroxylated at the 16α position by CYP154C34 were identified, including progesterone, testosterone, and androstenedione. The BL21(DE3) strain carrying pET28a-CYP154C34-RhFRED showed the highest substrate conversion rate, achieving over 90% conversion rates for seven substrates including progesterone, testosterone, and androstenedione. In addition, CYP154C34 had stronger affinity to its substrates than the analogues. [Conclusion] This study constructed two recombinant strains of CYP154C34 for whole-cell biotransformation and identified their catalytic functions. CYP154C34 can efficiently hydroxylate a wide range of steroid substrates at the 16α position with high conversion rates and excellent regio- and stereoselectivity, serving as a promising candidate for industrial applications.

    参考文献
    [1] RUDOLF JD, CHANG CY, MA M, SHEN B. Cytochromes P450 for natural product biosynthesis in Streptomyces:sequence, structure, and function[J]. Natural Product Reports, 2017, 34(9):1141-1172.
    [2] IIZAKA Y, SHERMAN DH, ANZAI Y. An overview of the cytochrome P450 enzymes that catalyze the same-site multistep oxidation reactions in biotechnologically relevant selected actinomycete strains[J]. Applied Microbiology and Biotechnology, 2021, 105(7):2647-2661.
    [3] LI Z, JIANG YY, GUENGERICH FP, MA L, LI SY, ZHANG W. Engineering cytochrome P450 enzyme systems for biomedical and biotechnological applications[J]. Journal of Biological Chemistry, 2020, 295(3):833-849.
    [4] STOUT CD. Cytochrome P450 conformational diversity[J]. Structure, 2004, 12(11):1921-1922.
    [5] DONOVA MV, EGOROVA OV. Microbial steroid transformations:current state and prospects[J]. Applied Microbiology and Biotechnology, 2012, 94(6):1423-1447.
    [6] BRESLOW R, ZHANG XJ, HUANG Y. Selective catalytic hydroxylation of a steroid by an artificial cytochrome P-450 enzyme[J]. Journal of the American Chemical Society, 1997, 119(19):4535-4536.
    [7] ZOLLE IM, BERGER ML, HAMMERSCHMIDT F, HAHNER S, SCHIRBEL A, PERIC-SIMOV B. New selective inhibitors of steroid 11β-hydroxylation in the adrenal cortex. Synthesis and structure-activity relationship of potent etomidate analogues[J]. Journal of Medicinal Chemistry, 2008, 51(7):2244-2253.
    [8] SEDEE AJ, van HENEGOUWEN GMJB, de VRIES H, GUIJT W, HAASNOOT CG. The photochemical decomposition of the progestogenic 19-norsteroid, norethisterone, in aqueous medium[J]. Pharmaceutisch Weekblad, 1985, 7(5):194-201.
    [9] KEILER AM, ZIERAU O, WOLF S, DIEL P, SCHÄNZER W, VOLLMER G, MACHALZ D, WOLBER G, PARR MK. Androgen-and estrogen-receptor mediated activities of 4-hydroxytestosterone, 4-hydroxyandrostenedione and their human metabolites in yeast based assays[J]. Toxicology Letters, 2018, 292:39-45.
    [10] GOODMAN JJ, SMITH LL. 16alpha-hydroxy steroids. XI. 2beta-and 16alpha-hydroxylation of 9alpha-fluorohydrocortisone by strains of Streptomyces roseochromogenes[J]. Applied Microbiology, 1961, 9:372-375.
    [11] PODUST LM, KIM Y, ARASE M, NEELY BA, BECK BJ, BACH H, SHERMAN DH, LAMB DC, KELLY SL, WATERMAN MR. The 1.92Å structure of Streptomyces coelicolor A3(2) CYP154C1[J]. Journal of Biological Chemistry, 2003, 278(14):12214-12221.
    [12] CHENG Q, LAMB DC, KELLY SL, LEI L, GUENGERICH FP. Cyclization of a cellular dipentaenone by Streptomyces coelicolor cytochrome P450154A1 without oxidation/reduction[J]. Journal of the American Chemical Society, 2010, 132(43):15173-15175.
    [13] DANGI B, KIM KH, KANG SH, OH TJ. Tracking down a new steroid-hydroxylating promiscuous cytochrome P450:CYP154C8 from Streptomyces sp. W2233-SM[J]. ChemBioChem, 2018, 19(10):1066-1077.
    [14] DANGI B, LEE CW, KIM KH, PARK SH, YU EJ, JEONG CS, PARK H, LEE JH, OH TJ. Characterization of two steroid hydroxylases from different Streptomyces spp. and their ligand-bound and-unbound crystal structures[J]. The FEBS Journal, 2019, 286(9):1683-1699.
    [15] WANG QW, MA BB, FUSHINOBU S, ZHANG CF, XU LH. Regio-and stereoselective hydroxylation of testosterone by a novel cytochrome P450154C2 from Streptomyces avermitilis[J]. Biochemical and Biophysical Research Communications, 2020, 522(2):355-361.
    [16] GAO QL, MA BB, WANG QW, ZHANG H, FUSHINOBU S, YANG J, LIN SS, SUN KK, HAN BN, XU LH. Improved 2α-hydroxylation efficiency of steroids by CYP154C2 using structure-guided rational design[J]. Applied and Environmental Microbiology, 2023, 89(3):e0218622.
    [17] MORIGASAKI S, TAKATA K, SANADA Y, WADA K, YEE BC, SHIN S, BUCHANAN BB. Novel forms of ferredoxin and ferredoxin-NADP reductase from spinach roots[J]. Archives of Biochemistry and Biophysics, 1990, 283(1):75-80.
    [18] SIBBESEN O, de VOSS JJ, de MONTELLANO PRO. Putidaredoxin reductase-putidaredoxin-cytochrome P450cam triple fusion protein[J]. Journal of Biological Chemistry, 1996, 271(37):22462-22469.
    [19] NOBLE MA, MILES CS, CHAPMAN SK, LYSEK DA, MacKAY AC, REID GA, HANZLIK RP, MUNRO AW. Roles of key active-site residues in flavocytochrome P450 BM3[J]. The Biochemical Journal, 1999, 339(Pt 2):371-379.
    [20] HUNTER DJB, ROBERTS GA, OST TWB, WHITE JH, MÜLLER S, TURNER NJ, FLITSCH SL, CHAPMAN SK. Analysis of the domain properties of the novel cytochrome P450 RhF[J]. FEBS Letters, 2005, 579(10):2215-2220.
    [21] LI SY, PODUST LM, SHERMAN DH. Engineering and analysis of a self-sufficient biosynthetic cytochrome P450 PikC fused to the RhFRED reductase domain[J]. Journal of the American Chemical Society, 2007, 129(43):12940-12941.
    [22] RAJIVGANDHI GN, LI WJ. Biomedical application of marine extremozymes[M]//Microbial Extremozymes. Amsterdam:Elsevier, 2022:111-123.
    [23] BRUNO S, COPPOLA D, di PRISCO G, GIORDANO D, VERDE C. Enzymes from marine polar regions and their biotechnological applications[J]. Marine Drugs, 2019, 17(10):544.
    [24] DEGTYARENKO KN, ARCHAKOV AI. Molecular evolution of P450 superfamily and P450-containing monooxygenase systems[J]. FEBS Letters, 1993, 332(1/2):1-8.
    [25] OMURA T, SATO R. The carbon monoxide-binding pigment of liver microsomes[J]. Journal of Biological Chemistry, 1964, 239(7):2370-2378.
    [26] MAKINO T, KATSUYAMA Y, OTOMATSU T, MISAWA N, OHNISHI Y. Regio-and stereospecific hydroxylation of various steroids at the 16α position of the D ring by the Streptomyces griseus cytochrome P450 CYP154C3[J]. Applied and Environmental Microbiology, 2014, 80(4):1371-1379.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

高齐霖,杨建,李蓉,赖刚,许莲花. 南沙链霉菌来源细胞色素P450酶CYP154C34的表征及生物转化[J]. 微生物学报, 2024, 64(2): 502-515

复制
分享
文章指标
  • 点击次数:206
  • 下载次数: 959
  • HTML阅读次数: 401
  • 引用次数: 0
历史
  • 收稿日期:2023-07-04
  • 最后修改日期:2023-10-26
  • 在线发布日期: 2024-01-31
  • 出版日期: 2024-02-04
文章二维码