嗜盐耐盐微生物抗盐胁迫相关离子转运蛋白研究进展
作者:
基金项目:

国家自然科学基金(31860030);人社部2021年度高层次留学人才回国资助项目;青海大学青年科研基金(2022-QYY-15)


Advances in ion transporters associated with tolerance of halophilic and halotolerant microorganisms to salt stress
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [116]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    离子转运蛋白在维持细胞内pH稳态、离子动态平衡等方面发挥着重要作用。钠离子转运体和钾离子转运体在嗜盐耐盐微生物中广泛存在,其"保钾排钠"机制是微生物抗盐胁迫的两大策略之一。近年来,嗜盐耐盐微生物中许多新型钠、钾离子转运体被陆续发现,如RDD蛋白、UPF0118蛋白、DUF蛋白和KimA蛋白等;Fe3+、Mg2+等其他金属离子的转运蛋白也被证实可通过影响微生物胞内相容性溶质的合成起到渗透调节的作用。本文综述了嗜盐耐盐微生物中抗盐胁迫相关的各类离子转运蛋白,分析其分子结构和工作机理,并对这些蛋白在农业方面的应用进行了展望。继续发现新的离子转运蛋白,探究抗盐胁迫相关离子转运蛋白的结构和机理,解析各转运系统的协同作用及分子调控机制,将进一步加深对嗜盐耐盐微生物抗盐胁迫调控的认识,并为盐碱地农作物的改良等提供新的思路。

    Abstract:

    Ion transporters play an important role in maintaining intracellular pH homeostasis and ionic equilibrium. Sodium ion transporters and potassium ion transporters exist widely in halophilic and halotolerant microorganisms, and their function of retaining potassium and excreting sodium is one of the two major strategies for microbial tolerance to salt stress. In recent years, new sodium and potassium ion transporters, such as RDD, UPF0118, DUF, and KimA, have been discovered in halophilic and halotolerant microorganisms. The transporters of other metal ions, such as Fe3+ and Mg2+, have been proved to play a role in microbial osmoregulation by participating in the synthesis of intracellular compatible solutes. This paper reviews the ion transporters associated with salt stress tolerance in halophilic and halotolerant microorganisms, analyzes their molecular structures and working mechanisms, and prospects for their applications in agriculture. Discovering new ion transporters, revealing the structures and mechanisms of ion transporters associated with salt stress tolerance, and analyzing the synergistic effect of coexisting transporter systems and their regulation mechanisms will deepen the understanding of the regulatory mechanisms of salt stress tolerance of halophilic and halotolerant microorganisms and provide new ideas for the improvement of crops in saline-alkali land.

    参考文献
    [1] 陈龙, 金阿南, 马香娟, 吴镝, 冯华军. 微生物高盐渗透适应策略及其耐盐强化研究进展[J]. 微生物学报, 2022, 62(9):3306-3317. CHEN L, JIN AN, MA XJ, WU D, FENG HJ. Research progress on osmotic pressure adaptation strategy and salt tolerance enhancement of microorganisms under high salinity environment[J]. Acta Microbiologica Sinica, 2022, 62(9):3306-3317(in Chinese).
    [2] KEMPF B, BREMER E. Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments[J]. Archives of Microbiology, 1998, 170(5):319-330.
    [3] PADAN E, VENTURI M, GERCHMAN Y, DOVER N. Na+/H+ antiporters[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2001, 1505(1):144-157.
    [4] SHAO L, ABDEL-MOTAAL H, CHEN J, CHEN HW, XU T, MENG L, ZHANG ZL, MENG FK, JIANG JQ. Characterization of a functionally unknown arginine-aspartate-aspartate family protein from Halobacillus andaensis and functional analysis of its conserved arginine/aspartate residues[J]. Frontiers in Microbiology, 2018, 9:807.
    [5] DONG P, WANG LD, SONG N, YANG LN, CHEN J, YAN MX, CHEN HW, ZHANG R, LI JC, ABDEL-MOTAAL H, JIANG JQ. A UPF0118 family protein with uncharacterized function from the moderate halophile Halobacillus andaensis represents a novel class of Na+(Li+)/H+ antiporter[J]. Scientific Reports, 2017, 7:45936.
    [6] TASCÓN I, SOUSA JS, COREY RA, MILLS DJ, GRIWATZ D, AUMÜLLER N, MIKUSEVIC V, STANSFELD PJ, VONCK J, HÄNELT I. Structural basis of proton-coupled potassium transport in the KUP family[J]. Nature Communications, 2020, 11:626.
    [7] HOBMEIER K, CANTONE M, NGUYEN QA, PFLÜGER-GRAU K, KREMLING A, KUNTE HJ, PFEIFFER F, MARIN-SANGUINO A. Adaptation to varying salinity in Halomonas elongata:much more than ectoine accumulation[J]. Frontiers in Microbiology, 2022, 13:846677.
    [8] 杨礼富, 赵百锁, 杨苏声. 细菌钠离子输出系统的类型及其可能机制[J]. 微生物学报, 2007, 47(6):1110-1114. YANG LF, ZHAO BS, YANG SS. Sodium ion transportation system and its possible mechanisms in bacteria[J]. Acta Microbiologica Sinica, 2007, 47(6):1110-1114(in Chinese).
    [9] 徐宁, 程海娇, 刘清岱, 刘君,马延和. 细菌Na+/H+逆向转运蛋白的研究进展[J]. 微生物学通报, 2015, 42(10):2002-2011. XU N, CHENG HJ, LIU QD, LIU J, MA YH. Advances in the study of bacterial Na+/H+ inverse transporters[J]. Microbiology, 2015, 42(10):2002-2011(in Chinese).
    [10] MASRATI G, DWIVEDI M, RIMON A, GLUCK-MARGOLIN Y, KESSEL A, ASHKENAZY H, MAYROSE I, PADAN E, BEN-TAL N. Broad phylogenetic analysis of cation/proton antiporters reveals transport determinants[J]. Nature Communications, 2018, 9:4205.
    [11] 张凯. 膜蛋白结构动力学[M]. 北京:科学出版社, 2021. ZHANG K. Structural Dynamics of Membrane Proteins[M]. Beijing:Science Press, 2021(in Chinese).
    [12] KURODA T, FUJITA N, UTSUGI J, KURODA M, MIZUSHIMA T, TSUCHIYA T. A major Li+extrusion system NhaB of Pseudomonas aeruginosa:comparison with the major Na+extrusion system NhaP[J]. Microbiology and Immunology, 2004, 48(4):243-250.
    [13] RESCH CT, WINOGRODZKI JL, HÄSE CC, DIBROV P. Insights into the biochemistry of the ubiquitous NhaP family of cation/H+ antiporters[J]. Biochemistry and Cell Biology, 2011, 89(2):130-137.
    [14] FUJISAWA M, KUSUMOTO A, WADA Y, TSUCHIYA T, ITO M. NhaK, a novel monovalent cation/H+ antiporter of Bacillus subtilis[J]. Archives of Microbiology, 2005, 183(6):411-420.
    [15] VERKHOVSKAYA ML, BARQUERA B, WIKSTRÖM M. Deletion of one of two Escherichia coli genes encoding putative Na+/H+ exchangers (ycgO) perturbs cytoplasmic alkali cation balance at low osmolarity[J]. Microbiology, 2001, 147(11):3005-3013.
    [16] GOUDA T, KURODA M, HIRAMATSU T, NOZAKI K, KURODA T, MIZUSHIMA T, TSUCHIYA T. nhaG Na+/H+ antiporter gene of Bacillus subtilis ATCC 9372, which is missing in the complete genome sequence of strain 168, and properties of the antiporter[J]. The Journal of Biochemistry, 2001, 130(5):711-717.
    [17] INABA K, KURODA T, SHIMAMOTO T, KAYAHARA T, TSUDA M, TSUCHIYA T. Lithium toxicity and Na+(Li+)/H+ antiporter in Escherichia coli[J]. Biological & Pharmaceutical Bulletin, 1994, 17(3):395-398.
    [18] STRAUSAK D, WASER M, SOLIOZ M. Functional expression of the Enterococcus hirae NaH-antiporter in Escherichia coli[J]. Journal of Biological Chemistry, 1993, 268(35):26334-26337.
    [19] RUDD KE. Linkage map of Escherichia coli K-12, edition 10:the physical map[J]. Microbiology and Molecular Biology Reviews, 1998, 62(3):985-1019.
    [20] FUJISAWA M, ITO M, KRULWICH TA. Three two-component transporters with channel-like properties have monovalent cation/proton antiport activity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(33):13289-13294.
    [21] SOUTHWORTH TW, GUFFANTI AA, MOIR A, KRULWICH TA. GerN, an endospore germination protein of Bacillus cereus, is an Na+/H+-K+ antiporter[J]. Journal of Bacteriology, 2001, 183(20):5896-5903.
    [22] MORMILE MR, EDWARDS T, FRANK R, GEURIN Z, HAENDIGES J, HOFFMANN M, MILLER J. Whole-genome analysis of Halomonas sp. soap lake #7 reveals it possesses putative mrp antiporter operon groups 1 and 2[J]. Genome Biology and Evolution, 2019, 11(6):1706-1709.
    [23] ABDEL-MOTAAL H, MENG L, ZHANG ZL, ABDELAZEZ AH, SHAO L, XU T, MENG FK, ABOZAED S, ZHANG R, JIANG JQ. An uncharacterized major facilitator superfamily transporter from Planococcus maritimus exhibits dual functions as a Na+(Li+, K+)/H+ antiporter and a multidrug efflux pump[J]. Frontiers in Microbiology, 2018, 9:1601.
    [24] 王艳红, 刘艳双, 石德喜, 朱保国, 吕保磊, 付诗雨, 徐苗, 王伟, 殷奎德. 新型YdjM超家族成员的钠/氢逆向转运蛋白功能鉴定[J]. 中国生物工程杂志, 2018, 38(12):32-40. WANG YH, LIU YS, SHI DX, ZHU BG, LV BL, FU SY, XU M, WANG W, YIN KD. Functional identification of Na+/H+ antiporter in novel YdjM superfamily members[J]. China Biotechnology, 2018, 38(12):32-40(in Chinese).
    [25] CUI YB, CHENG B, MENG YW, LI CF, YIN HJ, XU P, YANG CY. Expression and functional analysis of two NhaD type antiporters from the halotolerant and alkaliphilic Halomonas sp. Y2[J]. Extremophiles, 2016, 20(5):631-639.
    [26] 宋娜. 嗜碱盐单胞菌中新型的NhaD型钠/氢逆向转运蛋白基因的克隆与功能分析[D]. 哈尔滨:东北农业大学硕士学位论文, 2017. SONG N. Cloning and functional analysis of a novel NhaD-type sodium/hydrogen antiporter gene from Halomonas hydrophila[D]. Harbin:Master's Thesis of Northeast Agricultural University, 2017(in Chinese).
    [27] YANG LF, JIANG JQ, ZHAO BS, ZHANG B, FENG DQ, LU WD, WANG L, YANG SS. A Na+/H+ antiporter gene of the moderately halophilic bacterium Halobacillus dabanensis D-8T:cloning and molecular characterization[J]. FEMS Microbiology Letters, 2006, 255(1):89-95.
    [28] PRÁGAI Z, ESCHEVINS C, BRON S, HARWOOD CR. Bacillus subtilis NhaC, an Na+/H+ antiporter, influences expression of the phoPR operon and production of alkaline phosphatases[J]. Journal of Bacteriology, 2001, 183(8):2505-2515.
    [29] 贾桂燕, 王永杰, 陈志康, 陈星, 殷奎德, 李雯, 王艳红. 盐单胞菌DSM 16354T中新型耐盐基因的克隆及解析[J]. 中国生物工程杂志, 2022, 42(3):27-37. JIA GY, WANG YJ, CHEN ZK, CHEN X, YIN KD, LI W, WANG YH. Cloning and analysis of novel functional genes in Halomonas alkaliphila DSM 16354T[J]. China Biotechnology, 2022, 42(3):27-37(in Chinese).
    [30] WEST IC, MITCHELL P. Proton/sodium ion antiport in Escherichia coli[J]. The Biochemical Journal, 1974, 144(1):87-90.
    [31] WASER M, HESS-BIENZ D, DAVIES K, SOLIOZ M. Cloning and disruption of a putative NaH-antiporter gene of Enterococcus hirae[J]. Journal of Biological Chemistry, 1992, 267(8):5396-5400.
    [32] UTSUGI J, INABA K, KURODA T, TSUDA M, TSUCHIYA T. Cloning and sequencing of a novel Na+/H+ antiporter gene from Pseudomonas aeruginosa[J]. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 1998, 1398(3):330-334.
    [33] CHANROJ S, WANG GY, VENEMA K, ZHANG MW, DELWICHE CF, SZE H. Conserved and diversified gene families of monovalent cation/H(+) antiporters from algae to flowering plants[J]. Frontiers in Plant Science, 2012, 3:25.
    [34] OKAZAKI KI, WÖHLERT D, WARNAU J, JUNG H, YILDIZ Ö, KÜHLBRANDT W, HUMMER G. Mechanism of the electroneutral sodium/proton antiporter PaNhaP from transition-path shooting[J]. Nature Communications, 2019, 10:1742.
    [35] WARNAU J, WÖHLERT D, OKAZAKI KI, YILDIZ Ö, GAMIZ-HERNANDEZ AP, KAILA VRI, KÜHLBRANDT W, HUMMER G. Ion binding and selectivity of the Na+/H+ antiporter MjNhaP1 from experiment and simulation[J]. The Journal of Physical Chemistry B, 2020, 124(2):336-344.
    [36] 王姝杰, 王法龙, 李世访, 闫淑珍. 转Na+/H+ antiporter (Nhap)基因烟草植株的获得及耐盐性鉴定[J]. 农业生物技术学报, 2006, 14(1):74-78. WANG SJ, WANG FL, LI SF, YAN SZ. Overexpression of Na+/H+ of antiporter (Nhap) gene improves salt tolerance in tobacco[J]. Journal of Agricultural Biotechnology, 2006, 14(1):74-78(in Chinese)
    [37] CASEY D, SLEATOR RD. A genomic analysis of osmotolerance in Staphylococcus aureus[J]. Gene, 2021, 767:145268.
    [38] SEREIKA M, PETRIGLIERI F, JENSEN TBN, SANNIKOV A, HOPPE M, NIELSEN PH, MARSHALL IPG, SCHRAMM A, ALBERTSEN M. Closed genomes uncover a saltwater species of Candidatus Electronema and shed new light on the boundary between marine and freshwater cable bacteria[J]. The International Society for Microbial Ecology Journal, 2023, 17(4):561-569.
    [39] WINKELMANN I, UZDAVINYS P, KENNEY IM, BROCK J, MEIER PF, WAGNER LM, GABRIEL F, JUNG S, MATSUOKA R, BALLMOOS C, BECKSTEIN O, DREW D. Crystal structure of the Na+/H+ antiporter NhaA at active pH reveals the mechanistic basis for pH sensing[J]. Nature Communications, 2022, 13:6383.
    [40] 刘广发, 曾活水, 陈启伟, 高亚辉. 假单胞菌Na+/H+逆向转运蛋白基因nhaA的克隆与鉴定[J]. 遗传学报, 2005, 32(3):309-314. LIU GF, ZENG HS, CHEN QW, GAO YH. Cloning and characterization of Na+/H+ antiporter gene (nhaA) from Pseudomonas sp. Cn4902[J]. Journal of Genetics and Genomics, 2005, 32(3):309-314.
    [41] JANTO B, AHMED A, ITO M, LIU J, HICKS DB, PAGNI S, FACKELMAYER OJ, SMITH TA, EARL J, ELBOURNE LDH, HASSAN K, PAULSEN IT, KOLSTØ AB, TOURASSE NJ, EHRLICH GD, BOISSY R, LI G, XUE YF, MA YH, HU FZ, et al. Genome of alkaliphilic Bacillus pseudofirmus OF4 reveals adaptations that support the ability to grow in an external pH range from 7.5 to 11.4[J]. Environmental Microbiology, 2011, 13(12):3289-3309.
    [42] DING RT, YANG N, LIU JG. The osmoprotectant switch of potassium to compatible solutes in an extremely halophilic archaea Halorubrum kocurii 2020YC7[J]. Genes, 2022, 13(6):939.
    [43] KHARE G, REDDY PV, SIDHWANI P, TYAGI AK. KefB inhibits phagosomal acidification but its role is unrelated to M. tuberculosis survival in host[J]. Scientific Reports, 2013, 3:3527.
    [44] HAMAMOTO T, HASHIMOTO M, HINO M, KITADA M, SETO Y, KUDO T, HORIKOSHI K. Characterization of a gene responsible for the Na+/H+ antiporter system of alkalophilic Bacillus species strain C-125[J]. Molecular Microbiology, 1994, 14(5):939-946.
    [45] SWARTZ TH, IKEWADA S, ISHIKAWA O, ITO M, KRULWICH TA. The Mrp system:a giant among monovalent cation/proton antiporters?[J]. Extremophiles, 2005, 9(5):345-354.
    [46] ZHAI L, XIE JY, LIN YF, CHENG K, WANG LJ, YUE F, GUO JY, LIU JQ, YAO S. Genome sequencing and heterologous expression of antiporters reveal alkaline response mechanisms of Halomonas alkalicola[J]. Extremophiles, 2018, 22(2):221-231.
    [47] MORINO M, SUZUKI T, ITO M, KRULWICH TA. Purification and functional reconstitution of a seven-subunit mrp-type Na+/H+ antiporter[J]. Journal of Bacteriology, 2014, 196(1):28-35.
    [48] ZHAO WS, MA XP, LIU XX, JIAN HH, ZHANG Y, XIAO X. Cross-stress adaptation in a piezophilic and hyperthermophilic archaeon from deep sea hydrothermal vent[J]. Frontiers in Microbiology, 2020, 11:2081.
    [49] ITO M, GUFFANTI AA, OUDEGA B, KRULWICH TA. Mrp, a multigene, multifunctional locus in Bacillus subtilis with roles in resistance to cholate and to Na+ and in pH homeostasis[J]. Journal of Bacteriology, 1999, 181(8):2394-2402.
    [50] YAMAGUCHI T, TSUTSUMI F, PUTNOKY P, FUKUHARA M, NAKAMURA T. pH-dependent regulation of the multi-subunit cation/proton antiporter Pha1 system from Sinorhizobium meliloti[J]. Microbiology (Reading, England), 2009, 155(Pt 8):2750-2756.
    [51] SWARTZ TH, ITO M, OHIRA T, NATSUI S, HICKS DB, KRULWICH TA. Catalytic properties of Staphylococcus aureus and Bacillus members of the secondary cation/proton antiporter-3(Mrp) family are revealed by an optimized assay in an Escherichia coli host[J]. Journal of Bacteriology, 2007, 189(8):3081-3090.
    [52] FLUMAN N, ADLER J, ROTENBERG SA, BROWN MH, BIBI ET. Export of a single drug molecule in two transport cycles by a multidrug efflux pump[J]. Nature Communications, 2014, 5:4615.
    [53] 王艳红, 尹圣祥, 王吉宏, 王于, 乔志刚, 纪思雨, 贾桂燕. 盐单胞菌YH-I中MFS超家族转运蛋白基因的克隆、生物信息学分析及其功能初步验证[J]. 中国生物制品学杂志, 2018, 31(5):473-478, 484. WANG YH, YIN SX, WANG JH, WANG Y, QIAO ZG, JI SY, JIA GY. Cloning, bioinformatic analysis and preliminary functional identification of MFS transporter gene from Halomonas YH-I[J]. Chinese Journal of Biologicals, 2018, 31(5):473-478, 484(in Chinese).
    [54] 邓东, 颜宁. MFS超家族转运蛋白结构基础及转运机制[J]. 科学通报, 2015, 60(8):720-728. DENG D, YAN N. Structural basis and transport mechanism of MFS superfamily transporters[J]. Chinese Science Bulletin, 2015, 60(8):720-728(in Chinese).
    [55] PINNER E, PADAN E, SCHULDINER S. Kinetic properties of NhaB, a Na+/H+ antiporter from Escherichia coli[J]. Journal of Biological Chemistry, 1994, 269(42):26274-26279.
    [56] NOZAKI K, KURODA T, MIZUSHIMA T, TSUCHIYA T. A new Na+/H+ antiporter, NhaD, of Vibrio parahaemolyticus[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1998, 1369(2):213-220.
    [57] DZIOBA J, OSTROUMOV E, WINOGRODZKI A, DIBROV P. Cloning, functional expression in Escherichia coli and primary characterization of a new Na+/H+ antiporter, NhaD, of Vibrio cholerae[J]. Molecular and Cellular Biochemistry, 2002, 229(1):119-124.
    [58] 李春芳. 中度嗜盐嗜碱菌Halomonas sp. 19-A中相关Na+/H+逆向转运蛋白基因的克隆与功能研究[D]. 济南:山东大学硕士学位论文, 2015. LI CF. Cloning and functional study of Na+/H+ antitransporter gene from Halomonas sp. 19-A[D]. Jinan:Master's thesis of Shandong University, 2015(in Chinese).
    [59] YANG LF, ZHANG B, WANG L, YANG SS. The short C-terminal hydrophilic domain of NhaH Na+/H+ antiporter from Halobacillus dabanensis with roles in resistance to salt and in pH sensing[J]. Chinese Science Bulletin, 2008, 53(21):3311-3316.
    [60] PADAN E. Functional and structural dynamics of NhaA, a prototype for Na+ and H+ antiporters, which are responsible for Na+ and H+ homeostasis in cells[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2014, 1837(7):1047-1062.
    [61] HUNTE C, SCREPANTI E, VENTURI M, RIMON A, PADAN E, MICHEL H. Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH[J]. Nature, 2005, 435(7046):1197-1202.
    [62] PADAN E, KOZACHKOV L, HERZ K, RIMON A. NhaA crystal structure:functional-structural insights[J]. The Journal of Experimental Biology, 2009, 212(Pt 11):1593-1603.
    [63] LEE YC, HAAPANEN O, ALTMEYER A, KÜHLBRANDT W, SHARMA V, ZICKERMANN V. Ion transfer mechanisms in Mrp-type antiporters from high resolution cryoEM and molecular dynamics simulations[J]. Nature Communications, 2022, 13:6091.
    [64] SPERLING E, GÓRECKI K, DRAKENBERG T, HÄGERHÄLL C. Functional differentiation of antiporter-like polypeptides in complex I; a site-directed mutagenesis study of residues conserved in MrpA and NuoL but not in MrpD, NuoM, and NuoN[J]. PLoS One, 2016, 11(7):e0158972.
    [65] FANG H, QIN XY, ZHANG KD, NIE Y, WU XL. Role of the group 2 Mrp sodium/proton antiporter in rapid response to high alkaline shock in the alkaline- and salt-tolerant Dietzia sp. DQ12-45-1b[J]. Applied Microbiology and Biotechnology, 2018, 102(8):3765-3777.
    [66] LI B, ZHANG KD, NIE Y, WANG XP, ZHAO Y, ZHANG XC, WU XL. Structure of the Dietzia Mrp complex reveals molecular mechanism of this giant bacterial sodium proton pump[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(49):31166-31176.
    [67] GRÜNDLING A. Potassium uptake systems in Staphylococcus aureus:new stories about ancient systems[J]. mBio, 2013, 4(5):e00784-e00713.
    [68] 蔡霞, 何进. 第二信使分子c-di-AMP调控细菌中钾离子转运的机制[J]. 微生物学报, 2017, 57(10):1434-1442. CAI X, HE J. Second messenger c-di-AMP regulates potassium ion transport in bacteria[J]. Acta Microbiologica Sinica, 2017, 57(10):1434-1442(in Chinese).
    [69] KRAEGELOH A, AMENDT B, KUNTE HJ. Potassium transport in a halophilic member of the Bacteria domain:identification and characterization of the K+ uptake systems TrkH and TrkI from Halomonas elongata DSM 2581T[J]. Journal of Bacteriology, 2005, 187(3):1036-1043.
    [70] SCHLÖSSER A, MELDORF M, STUMPE S, BAKKER EP, EPSTEIN W. TrkH and its homolog, TrkG, determine the specificity and kinetics of cation transport by the Trk system of Escherichia coli[J]. Journal of Bacteriology, 1995, 177(7):1908-1910.
    [71] TANUDJAJA E, HOSHI N, YAMAMOTO K, IHARA K, FURUTA T, TSUJII M, ISHIMARU Y, UOZUMI N. Two Trk/Ktr/HKT-type potassium transporters, TrkG and TrkH, perform distinct functions in Escherichia coli K-12[J]. The Journal of Biological Chemistry, 2023, 299(2):102846.
    [72] SCHLÖSSER A, KLUTTIG S, HAMANN A, BAKKER EP. Subcloning, nucleotide sequence, and expression of trkG, a gene that encodes an integral membrane protein involved in potassium uptake via the Trk system of Escherichia coli[J]. Journal of Bacteriology, 1991, 173(10):3170-3176.
    [73] HOLTMANN G, BAKKER EP, UOZUMI N, BREMER E. KtrAB and KtrCD:two K+ uptake systems in Bacillus subtilis and their role in adaptation to hypertonicity[J]. Journal of Bacteriology, 2003, 185(4):1289-1298.
    [74] NAKAMURA T, YUDA R, UNEMOTO T, BAKKER EP. KtrAB, a new type of bacterial K+-uptake system from Vibrio alginolyticus[J]. Journal of Bacteriology, 1998, 180(13):3491-3494.
    [75] THOLEMA N, BRÜGGEN MV, MÄSER P, NAKAMURA T, SCHROEDER JI, KOBAYASHI H, UOZUMI N, BAKKER EP. All four putative selectivity filter glycine residues in KtrB are essential for high affinity and selective K+ uptake by the KtrAB system from Vibrio alginolyticus[J]. Journal of Biological Chemistry, 2005, 280(50):41146-41154.
    [76] ZULKIFLI L, AKAI M, YOSHIKAWA A, SHIMOJIMA M, OHTA H, GUY HR, UOZUMI N. The KtrA and KtrE subunits are required for Na+-dependent K+ uptake by KtrB across the plasma membrane in Synechocystis sp. strain PCC 6803[J]. Journal of Bacteriology, 2010, 192(19):5063-5070.
    [77] GREIE JC. The KdpFABC complex from Escherichia coli:a chimeric K+ transporter merging ion pumps with ion channels[J]. European Journal of Cell Biology, 2011, 90(9):705-710.
    [78] EPSTEIN W. The KdpD sensor kinase of Escherichia coli responds to several distinct signals to turn on expression of the kdp transport system[J]. Journal of Bacteriology, 2015, 198(2):212-220.
    [79] STRAHL H, GREIE JC. The extremely halophilic archaeon Halobacterium salinarum R1 responds to potassium limitation by expression of the K+-transporting KdpFABC P-type ATPase and by a decrease in intracellular K+[J]. Extremophiles, 2008, 12(6):741-752.
    [80] BOSSEMEYER D, SCHLÖSSER A, BAKKER EP. Specific cesium transport via the Escherichia coli Kup (TrkD) K+ uptake system[J]. Journal of Bacteriology, 1989, 171(4):2219-2221.
    [81] TANUDJAJA E, HOSHI N, SU YH, HAMAMOTO S, UOZUMI N. Kup-mediated Cs+ uptake and Kdp-driven K+ uptake coordinate to promote cell growth during excess Cs+ conditions in Escherichia coli[J]. Scientific Reports, 2017, 7:2122.
    [82] JOHNSON HA, HAMPTON E, LESLEY SA. The Thermotoga maritima Trk potassium transporter:from frameshift to function[J]. Journal of Bacteriology, 2009, 191(7):2276-2284.
    [83] DURELL SR, HAO Y, NAKAMURA T, BAKKER EP, GUY HR. Evolutionary relationship between K(+) channels and symporters[J]. Biophysical Journal, 1999, 77(2):775-788.
    [84] 姜影影. 死海放线菌新物种的多相分类鉴定及白色嗜盐多孢菌AFM 10251嗜盐机制的多组学研究[D]. 杨凌:西北农林科技大学博士学位论文, 2018. JIANG YY. Multiphase classification and identification of a new actinomyces species from the Dead Sea and a multiomics study on halophilic mechanism of Polyspora halophilus albicans AFM 10251[D]. Yangling:Doctoral dissertation of Northwest A&F University, 2018(in Chinese).
    [85] GUO YH, XUE YF, LIU J, WANG QH, MA YH. Characterization and function analysis of a halo-alkaline-adaptable Trk K+ uptake system in Alkalimonas amylolytica strain N10[J]. Science in China Series C:Life Sciences, 2009, 52(10):949-957.
    [86] CAO Y, PAN YP, HUANG H, JIN XS, LEVIN EJ, KLOSS B, ZHOU M. Gating of the TrkH ion channel by its associated RCK protein TrkA[J]. Nature, 2013, 496(7445):317-322.
    [87] 张晓燕. 海洋微生物钾转运蛋白基因trkH的克隆与表达[D]. 大连:大连理工大学硕士学位论文, 2015. ZHANG XY. Cloning and expression of marine microbial potassium transporter gene trkH[D]. Dalian:Master's Thesis of Dalian University of Technology, 2015(in Chinese).
    [88] LEVIN EJ, ZHOU M. Recent progress on the structure and function of the TrkH/KtrB ion channel[J]. Current Opinion in Structural Biology, 2014, 27:95-101.
    [89] 鲜先毅, 江世杰, 崔广艳, 刘盈盈, 代其林, 陈明, 王劲. 耐辐射异常球菌K+吸收蛋白ktrA基因功能研究[J]. 中国农业科技导报, 2014, 16(1):76-81. XIAN XY, JIANG SJ, CUI GY, LIU YY, DAI QL, CHEN M, WANG J. Functional analysis of ktrA gene encoding potassium uptake protein from Deinococcus radiodurans[J]. Journal of Agricultural Science and Technology, 2014, 16(1):76-81(in Chinese).
    [90] MATSUDA N, KOBAYASHI H, KATOH H, OGAWA T, FUTATSUGI L, NAKAMURA T, BAKKER EP, UOZUMI N. Na+-dependent K+ uptake ktr system from the Cyanobacterium synechocystis sp. PCC 6803 and its role in the early phases of cell adaptation to hyperosmotic shock[J]. Journal of Biological Chemistry, 2004, 279(52):54952-54962.
    [91] MATSUDA N, UOZUMI N. Ktr-mediated potassium transport, a major pathway for potassium uptake, is coupled to a proton gradient across the membrane in Synechocystis sp. PCC 6803[J]. Bioscience, Biotechnology, and Biochemistry, 2006, 70(1):273-275.
    [92] GANNOUN-ZAKI L, BELON C, DUPONT C, HILBERT F, KREMER L, BLANC-POTARD AB. Overexpression of the Salmonella KdpF membrane peptide modulates expression of kdp genes and intramacrophage growth[J]. FEMS Microbiology Letters, 2014, 359(1):34-41.
    [93] 张燕飞, 庞欢瑛, 简纪常, 鲁义善, 吴灶和. 溶藻弧菌kdpD基因敲除突变株的构建及其表型特征[J]. 微生物学通报, 2015, 42(9):1770-1778. ZHANG YF, PANG HY, JIAN JC, LU YS, WU ZH. Construction and characterization of the kdpD gene knock-out mutant of Vibrio alginolyticus[J]. Microbiology China, 2015, 42(9):1770-1778(in Chinese).
    [94] KIXMÜLLER D, STRAHL H, WENDE A, GREIE JC. Archaeal transcriptional regulation of the prokaryotic KdpFABC complex mediating K+ uptake in H. salinarum[J]. Extremophiles, 2011, 15(6):643.
    [95] SATO Y, NANATANI K, HAMAMOTO S, SHIMIZU M, TAKAHASHI M, TABUCHI-KOBAYASHI M, MIZUTANI A, SCHROEDER JI, SOUMA S, UOZUMI N. Defining membrane spanning domains and crucial membrane-localized acidic amino acid residues for K+ transport of a Kup/HAK/KT-type Escherichia coli potassium transporter[J]. The Journal of Biochemistry, 2014, 155(5):315-323.
    [96] TRCHOUNIAN A, KOBAYASHI H. Kup is the major K+ uptake system in Escherichia coli upon hyper-osmotic stress at a low pH[J]. FEBS Letters, 1999, 447(2/3):144-148.
    [97] ZHANG HZ, PAN YP, HU LY, HUDSON MA, HOFSTETTER KS, XU ZC, RONG MQ, WANG Z, PRASAD BVV, LOCKLESS SW, CHIU W, ZHOU M. TrkA undergoes a tetramer-to-dimer conversion to open TrkH which enables changes in membrane potential[J]. Nature Communications, 2020, 11:547.
    [98] CORRIGAN RM, CAMPEOTTO I, JEGANATHAN T, ROELOFS KG, LEE VT, GRÜNDLING A. Systematic identification of conserved bacterial c-di-AMP receptor proteins[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(22):9084-9089.
    [99] GIBHARDT J, HOFFMANN G, TURDIEV A, WANG MY, LEE VT, COMMICHAU FM. c-di-AMP assists osmoadaptation by regulating the Listeria monocytogenes potassium transporters KimA and KtrCD[J]. Journal of Biological Chemistry, 2019, 294(44):16020-16033.
    [100] FUSS MF, WIEFERIG JP, COREY RA, HELLMICH Y, TASCÓN I, SOUSA JS, STANSFELD PJ, VONCK J, HÄNELT I. Cyclic di-AMP traps proton-coupled K+ transporters of the KUP family in an inward-occluded conformation[J]. Nature Communications, 2023, 14:3683.
    [101] ROCHA R, TEIXEIRA-DUARTE CM, JORGE JMP, MORAIS-CABRAL JH. Characterization of the molecular properties of KtrC, a second RCK domain that regulates a Ktr channel in Bacillus subtilis[J]. Journal of Structural Biology, 2019, 205(3):34-43.
    [102] KIM H, YOUN SJ, KIM SO, KO J, LEE JO, CHOI BS. Structural studies of potassium transport protein KtrA regulator of conductance of K+(RCK) C domain in complex with cyclic diadenosine monophosphate (c-di-AMP)[J]. Journal of Biological Chemistry, 2015, 290(26):16393-16402.
    [103] ARGANDOÑA M, NIETO JJ, IGLESIAS-GUERRA F, CALDERÓN MI, GARCÍA-ESTEPA R, VARGAS C. Interplay between iron homeostasis and the osmotic stress response in the halophilic bacterium Chromohalobacter salexigens[J]. Applied and Environmental Microbiology, 2010, 76(11):3575-3589.
    [104] SALVADOR M, ARGANDOÑA M, NARANJO E, PIUBELI F, NIETO JJ, CSONKA LN, VARGAS C. Quantitative RNA-seq analysis unveils osmotic and thermal adaptation mechanisms relevant for ectoine production in Chromohalobacter salexigens[J]. Frontiers in Microbiology, 2018, 9:1845.
    [105] SMITH RL, BANKS JL, SNAVELY MD, MAGUIRE ME. Sequence and topology of the CorA magnesium transport systems of Salmonella typhimurium and Escherichia coli. Identification of a new class of transport protein[J]. Journal of Biological Chemistry, 1993, 268(19):14071-14080.
    [106] 朱德锐, 龙启福, 沈国平, 李丹丹, 刘德立. 青海湖樊氏盐单胞菌QHL5四氢嘧啶合成影响因素分析[J]. 环境化学, 2015, 34(1):111-116. ZHU DR, LONG QF, SHEN GP, LI DD, LIU DL. Accumulation and influential factors of ectoine synthesis in Halomonas ventosae QHL5 isolated from Qinghai Lake[J]. Environmental Chemistry, 2015, 34(1):111-116(in Chinese).
    [107] 顾頔. 中度嗜盐菌Brachybacterium muris生物学特性、盐胁迫应答的相容性溶质分子鉴定及其作用机制研究[D]. 杭州:浙江大学硕士学位论文, 2021. GU D. Biological characteristics of moderately halophilic bacterium Brachybacterium muris, molecular identification of compatible solute in response to salt stress and its mechanism of action[D]. Hangzhou:Master's Thesis of Zhejiang University, 2021(in Chinese).
    [108] MENG YW, LV PW, CUI YB, ZHANG LN, WANG Y, MA CQ, XU P, YANG CY. Potassium resistance of halotolerant and alkaliphilic Halomonas sp. Y2 by a Na+-induced K+ extrusion mechanism[J]. Microbiology, 2019, 165(4):411-418.
    [109] ZHANG TT, CUI TQ, CAO YN, LI YZ, LI FH, ZHU DR, XING JW. Whole genome sequencing of the halophilic Halomonas qaidamensis XH36, a novel species strain with high ectoine production[J]. Antonie Van Leeuwenhoek, 2022, 115(4):545-559.
    [110] ACCIARRI G, GIZZI FO, TORRES MANNO MA, STÜLKE J, ESPARIZ M, BLANCATO VS, MAGNI C. Redundant potassium transporter systems guarantee the survival of Enterococcus faecalis under stress conditions[J]. Frontiers in Microbiology, 2023, 14:1117684.
    [111] 舒志万, 王智博, 陶宇杰, 王嵘, 沈国平, 邢江娃, 朱德锐. 盐单胞菌假定蛋白基因的功能预测与克隆表达及耐盐相关性[J]. 生物学杂志, 2023:1-7. SHU ZY, WANG ZB, TAO YJ, WANG R, SHEN GP, XING JW, ZHU DR. Correlation between functional prediction, cloning and expression and salt tolerance of halomonas putative protein gene[J]. Journal of Biology, 2023:1-7(in Chinese).
    [112] 罗茜, 张海玲, 徐香玲, 姚琳, 王全伟. Na+/H+逆向转运蛋白基因PsnhaA的克隆及在大豆中的功能验证[J]. 黑龙江农业科学, 2015(5):6-12. LUO Q, ZHANG HL, XU XL, YAO L, WANG QW. Cloning of Na+/H+ antiporter gene PsnhaA and analysis on function in soybean[J]. Heilongjiang Agricultural Sciences, 2015(5):6-12(in Chinese).
    [113] 赵亚楠. 转GNA、ACA、NhaD、HEWL和CP4-EPSPS基因棉花新材料的创制[D]. 北京:中国农业科学院硕士学位论文, 2020. ZHAO YN. Creation of new cotton materials with GNA, ACA, NhaD, HEWL and CP4-EPSPS genes[D]. Beijing:Master's Thesis of Chinese Academy of Agricultural Sciences, 2020(in Chinese).
    [114] GUO WF, LI GQ, WANG N, YANG CF, ZHAO YN, PENG HK, LIU DH, CHEN SF. A Na+/H+ antiporter, K2-NhaD, improves salt and drought tolerance in cotton (Gossypium hirsutum L.)[J]. Plant Molecular Biology, 2020, 102(4):553-567.
    [115] DING BJ, ZHANG XY, XU YS, AN LJ, LIU XG, SU Q. The bacterial potassium transporter gene MbtrkH improves K+ uptake in yeast and tobacco[J]. PLoS One, 2020, 15(8):e0236246.
    [116] 丁宝娟, 安利佳, 苏乔. 过表达钾转运蛋白基因trkH提高玉米的钾营养[J]. 植物研究, 2020, 40(1):141-147. DING BJ, AN LJ, SU Q. Overexpression of K+ transporter gene trkH in enhancing K+ nutrition in maize[J]. Plant Research, 2020, 40(1):141-147(in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

马欣,马想蓉,朱德锐,李永臻,邢江娃. 嗜盐耐盐微生物抗盐胁迫相关离子转运蛋白研究进展[J]. 微生物学报, 2024, 64(3): 651-671

复制
分享
文章指标
  • 点击次数:536
  • 下载次数: 902
  • HTML阅读次数: 359
  • 引用次数: 0
历史
  • 收稿日期:2023-08-17
  • 最后修改日期:2023-11-30
  • 在线发布日期: 2024-03-18
  • 出版日期: 2024-03-04
文章二维码