细菌金属离子外排系统及金属稳态调控
作者:
  • 董欣楠

    董欣楠

    浙江农林大学动物科技学院·动物医学院 动物健康互联网检测技术浙江省工程研究中心 浙江省动物医学与健康管理国际科技合作基地 浙江省畜禽绿色生态健康养殖应用技术研究重点实验室 中澳动物健康大数据分析联合实验室, 浙江 杭州 311300
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 邓思敏

    邓思敏

    浙江农林大学动物科技学院·动物医学院 动物健康互联网检测技术浙江省工程研究中心 浙江省动物医学与健康管理国际科技合作基地 浙江省畜禽绿色生态健康养殖应用技术研究重点实验室 中澳动物健康大数据分析联合实验室, 浙江 杭州 311300
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 宋厚辉

    宋厚辉

    浙江农林大学动物科技学院·动物医学院 动物健康互联网检测技术浙江省工程研究中心 浙江省动物医学与健康管理国际科技合作基地 浙江省畜禽绿色生态健康养殖应用技术研究重点实验室 中澳动物健康大数据分析联合实验室, 浙江 杭州 311300
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 徐加利

    徐加利

    浙江农林大学动物科技学院·动物医学院 动物健康互联网检测技术浙江省工程研究中心 浙江省动物医学与健康管理国际科技合作基地 浙江省畜禽绿色生态健康养殖应用技术研究重点实验室 中澳动物健康大数据分析联合实验室, 浙江 杭州 311300
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 程昌勇

    程昌勇

    浙江农林大学动物科技学院·动物医学院 动物健康互联网检测技术浙江省工程研究中心 浙江省动物医学与健康管理国际科技合作基地 浙江省畜禽绿色生态健康养殖应用技术研究重点实验室 中澳动物健康大数据分析联合实验室, 浙江 杭州 311300
    在期刊界中查找
    在百度中查找
    在本站中查找
基金项目:

国家自然科学基金(31860030);人社部2021年度高层次留学人才回国资助项目;青海大学青年科研基金(2022-QYY-15)


Bacterial metal ion efflux systems and metal homeostasis
Author:
  • DONG Xinnan

    DONG Xinnan

    China-Australia Joint Laboratory for Animal Health Big Data Analytics, Key Laboratory of Applied Technology on Green-eco-healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • DENG Simin

    DENG Simin

    China-Australia Joint Laboratory for Animal Health Big Data Analytics, Key Laboratory of Applied Technology on Green-eco-healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • SONG Houhui

    SONG Houhui

    China-Australia Joint Laboratory for Animal Health Big Data Analytics, Key Laboratory of Applied Technology on Green-eco-healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • XU Jiali

    XU Jiali

    China-Australia Joint Laboratory for Animal Health Big Data Analytics, Key Laboratory of Applied Technology on Green-eco-healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHENG Changyong

    CHENG Changyong

    China-Australia Joint Laboratory for Animal Health Big Data Analytics, Key Laboratory of Applied Technology on Green-eco-healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [84]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    铁、铜、锌、锰等金属离子是各类生物体生存和增殖所必需的微量元素,可影响生物体内蛋白酶活性、免疫反应、生理过程和抗感染机制。细菌感染过程中,宿主可通过限制或提高体内环境中金属离子的浓度来抑制细菌增殖,与此同时,细菌进化出各种转运系统以适应宿主体内金属离子水平的变化。由于不同细菌的金属离子外排系统在结构和生化特性上存在变异,它们呈现出独特的金属离子外排模式。本文根据现有文献报道及本团队研究结果,对铁、铜、锌和锰离子的细菌外排系统进行讨论和总结,旨在综述目前对细菌金属离子稳态调控机制研究进展的认识,为深入理解细菌金属稳态调控相关机制提供参考。

    Abstract:

    Metals like iron, copper, zinc, and manganese are trace elements essential for the survival and growth of diverse organisms. They influence the protease activity, immune response, physiological processes, and anti-infection mechanism in organisms. During bacterial infection, the host can limit or increase the availability of metal ions in the internal environment to inhibit bacterial proliferation. Meanwhile, bacteria have evolved various transport systems to adapt to the changes in metal ion levels in the host. The metal ion efflux systems exhibit distinctive efflux patterns due to variations in the structural and biochemical properties. We reviewed the available articles and our own research findings about the bacterial efflux systems of iron, copper, zinc, and manganese ions, aiming to provide an overview of the progress in the research on the regulatory mechanisms governing bacterial metal homeostasis. This review of metal ion efflux systems across different bacteria highlights the adaptation that enables bacterial survival in diverse host environments.

    参考文献
    [1] ANDREINI C, BERTINI I, CAVALLARO G, HOLLIDAY GL, THORNTON JM. Metal ions in biological catalysis:from enzyme databases to general principles[J]. JBIC Journal of Biological Inorganic Chemistry, 2008, 13(8):1205-1218.
    [2] MARET W. Metalloproteomics, metalloproteomes, and the annotation of metalloproteins[J]. Metallomics:Integrated Biometal Science, 2010, 2(2):117-125.
    [3] ZHANG Y, ZHENG JG. Bioinformatics of metalloproteins and metalloproteomes[J]. Molecules (Basel, Switzerland), 2020, 25(15):3366.
    [4] MACOMBER L, IMLAY JA. The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(20):8344-8349.
    [5] RANQUET C, OLLAGNIER-DE-CHOUDENS S, LOISEAU L, BARRAS F, FONTECAVE M. Cobalt stress in Escherichia coli. The effect on the iron-sulfur proteins[J]. Journal of Biological Chemistry, 2007, 282(42):30442-30451.
    [6] ALQUETHAMY SF, ADAMS FG, NAIDU V, KHORVASH M, PEDERICK VG, ZANG MG, PATON JC, PAULSEN IT, HASSAN KA, CAIN AK, MCDEVITT CA, EIJKELKAMP BA. The role of zinc efflux during Acinetobacter baumannii infection[J]. ACS Infectious Diseases, 2020, 6(1):150-158.
    [7] MURDOCH CC, SKAAR EP. Nutritional immunity:the battle for nutrient metals at the host-pathogen interface[J]. Nature Reviews Microbiology, 2022, 20(11):657-670.
    [8] MA RN, FANG L, CHEN L, WANG XN, JIANG J, GAO LZ. Ferroptotic stress promotes macrophages against intracellular bacteria[J]. Theranostics, 2022, 12(5):2266-2289.
    [9] 王泽煌, 王蒙, 蔡昆争, 蔡一霞, 黄飞. 细菌对重金属吸附和解毒机制的研究进展[J]. 生物技术通报, 2016, 32(12):13-18. WANG ZH, WANG M, CAI KZ, CAI YX, HUANG F. Research advances on biosorption and detoxification mechanisms of heavy metals by bacteria[J]. Biotechnology Bulletin, 2016, 32(12):13-18(in Chinese).
    [10] BALDI F, GALLO M, MARCHETTO D, FANI R, MAIDA I, HORVAT M, FAJON V, ZIZEK S, HINES M. Seasonal mercury transformation and surficial sediment detoxification by bacteria of Marano and Grado lagoons[J]. Estuarine, Coastal and Shelf Science, 2012, 113:105-115.
    [11] OSMAN D, WALDRON KJ, DENTON H, TAYLOR CM, GRANT AJ, MASTROENI P, ROBINSON NJ, CAVET JS. Copper homeostasis in Salmonella is atypical and copper-CueP is a major periplasmic metal complex[J]. Journal of Biological Chemistry, 2010, 285(33):25259-25268.
    [12] BROWN NL, STOYANOV JV, KIDD SP, HOBMAN JL. The MerR family of transcriptional regulators[J]. FEMS Microbiology Reviews, 2003, 27(2/3):145-163.
    [13] BUSENLEHNER LS, PENNELLA MA, GIEDROC DP. The SmtB/ArsR family of metalloregulatory transcriptional repressors:structural insights into prokaryotic metal resistance[J]. FEMS Microbiology Reviews, 2003, 27(2/3):131-143.
    [14] MOORE CM, GABALLA A, HUI M, YE RW, HELMANN JD. Genetic and physiological responses of Bacillus subtilis to metal ion stress[J]. Molecular Microbiology, 2005, 57(1):27-40.
    [15] MONTANINI B, BLAUDEZ D, JEANDROZ S, SANDERS D, CHALOT M. Phylogenetic and functional analysis of the cation diffusion facilitator (CDF) family:improved signature and prediction of substrate specificity[J]. BMC Genomics, 2007, 8(1):1-16.
    [16] BEINERT H, HOLM RH, MÜNCK E. Iron-sulfur clusters:nature's modular, multipurpose structures[J]. Science, 1997, 277(5326):653-659.
    [17] HALEY KP, SKAAR EP. A battle for iron:host sequestration and Staphylococcus aureus acquisition[J]. Microbes and Infection, 2012, 14(3):217-227.
    [18] MU QD, CHEN LY, GAO XT, SHEN SY, SHENG WJ, MIN JX, WANG FD. The role of iron homeostasis in remodeling immune function and regulating inflammatory disease[J]. Science Bulletin, 2021, 66(17):1806-1816.
    [19] LIM D, KIM KS, JEONG JH, MARQUES O, KIM HJ, SONG M, LEE TH, KIM JI, CHOI HS, MIN JJ, BUMANN D, MUCKENTHALER MU, CHOY HE. The hepcidin-ferroportin axis controls the iron content of Salmonella-containing vacuoles in macrophages[J]. Nature Communications, 2018, 9(1):2091.
    [20] HOLDEN VI, BACHMAN MA. Diverging roles of bacterial siderophores during infection[J]. Metallomics:Integrated Biometal Science, 2015, 7(6):986-995.
    [21] BRADLEY JM, SVISTUNENKO DA, WILSON MT, HEMMINGS AM, MOORE GR, LE BRUN NE. Bacterial iron detoxification at the molecular level[J]. Journal of Biological Chemistry, 2020, 295(51):17602-17623.
    [22] GUAN GH, PINOCHET-BARROS A, GABALLA A, PATEL SJ, ARGÜELLO JM, HELMANN JD. PfeT, a P1B4-type ATPase, effluxes ferrous iron and protects Bacillus subtilis against iron intoxication[J]. Molecular Microbiology, 2015, 98(4):787-803.
    [23] PI HL, PATEL SJ, ARGÜELLO JM, HELMANN JD. The Listeria monocytogenes Fur-regulated virulence protein FrvA is an Fe(II) efflux P1B4-type ATPase[J]. Molecular Microbiology, 2016, 100(6):1066-1079.
    [24] PATEL SJ, LEWIS BE, LONG JE, NAMBI S, SASSETTI CM, STEMMLER TL, ARGÜELLO JM. Fine-tuning of substrate affinity leads to alternative roles of Mycobacterium tuberculosis Fe2+-ATPases[J]. Journal of Biological Chemistry, 2016, 291(22):11529-11539.
    [25] ANTON A, GROSSE C, REISSMANN J, PRIBYL T, NIES DH. CzcD is a heavy metal ion transporter involved in regulation of heavy metal resistance in Ralstonia sp. strain CH34[J]. Journal of Bacteriology, 1999, 181(22):6876-6881.
    [26] GRASS G, OTTO M, FRICKE B, HANEY CJ, RENSING C, NIES DH, MUNKELT D. FieF (YiiP) from Escherichia coli mediates decreased cellular accumulation of iron and relieves iron stress[J]. Archives of Microbiology, 2005, 183(1):9-18.
    [27] SCHÄFFER S, HANTKE K, BRAUN V. Nucleotide sequence of the iron regulatory gene fur[J]. Molecular and General Genetics MGG, 1985, 200(1):110-113.
    [28] SALUSSO A, RAIMUNDA D. Defining the roles of the cation diffusion facilitators in Fe2+/Zn2+ homeostasis and establishment of their participation in virulence in Pseudomonas aeruginosa[J]. Frontiers in Cellular and Infection Microbiology, 2017, 7:84.
    [29] BENNETT BD, BRUTINEL ED, GRALNICK JA. A ferrous iron exporter mediates iron resistance in Shewanella oneidensis MR-1[J]. Applied and Environmental Microbiology, 2015, 81(22):7938-7944.
    [30] FRAWLEY ER, CROUCH ML V, BINGHAM- RAMOS LK, ROBBINS HF, WANG WL, WRIGHT GD, FANG FC. Iron and citrate export by a major facilitator superfamily pump regulates metabolism and stress resistance in Salmonella Typhimurium[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(29):12054-12059.
    [31] ANDREWS SC. The ferritin-like superfamily:evolution of the biological iron storeman from a rubrerythrin-like ancestor[J]. Biochimica et Biophysica Acta (BBA)-General Subjects, 2010, 1800(8):691-705.
    [32] RUANGKIATTIKUL N, BHUBHANIL S, CHAMSING J, NIAMYIM P, SUKCHAWALIT R, MONGKOLSUK S. Agrobacterium tumefaciens membrane-bound ferritin plays a role in protection against hydrogen peroxide toxicity and is negatively regulated by the iron response regulator[J]. FEMS Microbiology Letters, 2012, 329(1):87-92.
    [33] SANKARI S, O'BRIAN MR. A bacterial iron exporter for maintenance of iron homeostasis[J]. Journal of Biological Chemistry, 2014, 289(23):16498-16507.
    [34] PINOCHET-BARROS A, HELMANN JD. Bacillus subtilis fur is a transcriptional activator for the PerR-repressed pfeT gene, encoding an iron efflux pump[J]. Journal of Bacteriology, 2020, 202(8):e00697-e00619.
    [35] BESWICK PH, HALL GH, HOOK AJ, LITTLE K, MCBRIEN DC, LOTT KA. Copper toxicity:evidence for the conversion of cupric to cuprous copper in vivo under anaerobic conditions[J]. Chemico-Biological Interactions, 1976, 14(3/4):347-356.
    [36] HODGKINSON V, PETRIS MJ. Copper homeostasis at the host-pathogen interface[J]. Journal of Biological Chemistry, 2012, 287(17):13549-13555.
    [37] FUNG DKC, LAU WY, CHAN WT, YAN AX. Copper efflux is induced during anaerobic amino acid limitation in Escherichia coli to protect iron-sulfur cluster enzymes and biogenesis[J]. Journal of Bacteriology, 2013, 195(20):4556-4568.
    [38] GIACHINO A, WALDRON KJ. Copper tolerance in bacteria requires the activation of multiple accessory pathways[J]. Molecular Microbiology, 2020, 114(3):377-390.
    [39] MACOMBER L, RENSING C, IMLAY JA. Intracellular copper does not catalyze the formation of oxidative DNA damage in Escherichia coli[J]. Journal of Bacteriology, 2007, 189(5):1616-1626.
    [40] KOH EI, ROBINSON AE, BANDARA N, ROGERS BE, HENDERSON JP. Copper import in Escherichia coli by the yersiniabactin metallophore system[J]. Nature Chemical Biology, 2017, 13(9):1016-1021.
    [41] GRASS G, THAKALI K, KLEBBA PE, THIEME D, MÜLLER A, WILDNER GF, RENSING C. Linkage between catecholate siderophores and the multicopper oxidase CueO in Escherichia coli[J]. Journal of Bacteriology, 2004, 186(17):5826-5833.
    [42] TREE JJ, KIDD SP, JENNINGS MP, MCEWAN AG. Copper sensitivity of cueO mutants of Escherichia coli K-12 and the biochemical suppression of this phenotype[J]. Biochemical and Biophysical Research Communications, 2005, 328(4):1205-1210.
    [43] SITTHISAK S, KNUTSSON L, WEBB JW, JAYASWAL RK. Molecular characterization of the copper transport system in Staphylococcus aureus[J]. Microbiology, 2007, 153(12):4274-4283.
    [44] ESPARIZ M, CHECA SK, AUDERO MEP, PONTEL LB, SONCINI FC. Dissecting the Salmonella response to copper[J]. Microbiology, 2007, 153(9):2989-2997.
    [45] FAN B, ROSEN BP. Biochemical characterization of CopA, the Escherichia coli Cu(I)-translocating P-type ATPase[J]. Journal of Biological Chemistry, 2002, 277(49):46987-46992.
    [46] MANA-CAPELLI S, MANDAL AK, ARGÜELLO JM. Archaeoglobus fulgidus CopB is a thermophilic Cu2+-ATPase:functional role of its histidine-rich-N-terminal metal binding domain[J]. Journal of Biological Chemistry, 2003, 278(42):40534-40541.
    [47] FRANKE S, GRASS G, RENSING C, NIES DH. Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli[J]. Journal of Bacteriology, 2003, 185(13):3804-3812.
    [48] 杜静怡, 王铖, 郭君慧, 谢浩. 细菌RND外排泵的结构与作用机制研究进展[J]. 中国抗生素杂志, 2022, 47(10):994-1001. DU JY, WANG C, GUO JH, XIE H. Research progress in the structure and function of RND efflux pump[J]. Chinese Journal of Antibiotics, 2022, 47(10):994-1001(in Chinese).
    [49] GOLD B, DENG HT, BRYK R, VARGAS D, ELIEZER D, ROBERTS J, JIANG XJ, NATHAN C. Identification of a copper-binding metallothionein in pathogenic mycobacteria[J]. Nature Chemical Biology, 2008, 4(10):609-616.
    [50] DELMAR JA, SU CC, YU EW. Heavy metal transport by the CusCFBA efflux system[J]. Protein Science:a Publication of the Protein Society, 2015, 24(11):1720-1736.
    [51] KATUMBA GL, TRAN H, HENDERSON JP. The Yersinia high-pathogenicity island encodes a siderophore-dependent copper response system in uropathogenic Escherichia coli[J]. mBio, 2022, 13(1):e0239121.
    [52] CORBETT D, SCHULER S, GLENN S, ANDREW PW, CAVET JS, ROBERTS IS. The combined actions of the copper-responsive repressor CsoR and copper-metallochaperone CopZ modulate CopA-mediated copper efflux in the intracellular pathogen Listeria monocytogenes[J]. Molecular Microbiology, 2011, 81(2):457-472.
    [53] KAUR I, PURVES J, HARWOOD M, KETLEY JM, ANDREW PW, WALDRON KJ, MORRISSEY JA. Role of horizontally transferred copper resistance genes in Staphylococcus aureus and Listeria monocytogenes[J]. Microbiology, 2022, 168(4):001162.
    [54] 李博, 李晶, 沈立新. 细菌锌离子调控体系与感染[J]. 微生物学报, 2016, 56(8):1211-1221. LI B, LI J, SHEN LX. Zinc regulation system in bacteria and its relationship with infection-a review[J]. Acta Microbiologica Sinica, 2016, 56(8):1211-1221(in Chinese).
    [55] EIJKELKAMP BA, MOREY JR, WEEN MP, ONG CL Y, MCEWAN AG, PATON JC, MCDEVITT CA. Extracellular zinc competitively inhibits manganese uptake and compromises oxidative stress management in Streptococcus pneumoniae[J]. PLoS One, 2014, 9(2):e89427.
    [56] STOJILJKOVIC I, PERKINS-BALDING D. Processing of heme and heme-containing proteins by bacteria[J]. DNA and Cell Biology, 2002, 21(4):281-295.
    [57] ONG CL Y, GILLEN CM, BARNETT TC, WALKER MJ, MCEWAN AG. An antimicrobial role for zinc in innate immune defense against group A Streptococcus[J]. Journal of Infectious Diseases, 2014, 209(10):1500-1508.
    [58] ONG CL Y, WALKER MJ, MCEWAN AG. Zinc disrupts central carbon metabolism and capsule biosynthesis in Streptococcus pyogenes[J]. Scientific Reports, 2015, 5:10799.
    [59] LI JH, REN XJ, FAN BQ, HUANG ZY, WANG W, ZHOU HB, LOU ZF, DING HG, LYU JX, TAN GQ. Zinc toxicity and iron-sulfur cluster biogenesis in Escherichia coli[J]. Applied and Environmental Microbiology, 2019, 85(9):e01967-18.
    [60] BOTELLA H, PEYRON P, LEVILLAIN F, POINCLOUX R, POQUET Y, BRANDLI I, WANG C, TAILLEUX L, TILLEUL S, CHARRIÈRE GM, WADDELL SJ, FOTI M, LUGO-VILLARINO G, GAO Q, MARIDONNEAU-PARINI I, BUTCHER PD, CASTAGNOLI PR, GICQUEL B, de CHASTELLIER C, NEYROLLES O. Mycobacterial P1-type ATPases mediate resistance to zinc poisoning in human macrophages[J]. Cell Host & Microbe, 2011, 10(3):248-259.
    [61] STOCKS CJ, von PEIN JB, CURSON JEB, RAE J, PHAN MD, FOO D, BOKIL NJ, KAMBE T, PETERS KM, PARTON RG, SCHEMBRI MA, KAPETANOVIC R, SWEET MJ. Frontline science:LPS-inducible SLC30A1 drives human macrophage-mediated zinc toxicity against intracellular Escherichia coli[J]. Journal of Leukocyte Biology, 2021, 109(2):287-297.
    [62] ANTON A, WELTROWSKI A, HANEY CJ, FRANKE S, GRASS G, RENSING C, NIES DH. Characteristics of zinc transport by two bacterial cation diffusion facilitators from Ralstonia metallidurans CH34 and Escherichia coli[J]. Journal of Bacteriology, 2004, 186(22):7499-7507.
    [63] LONERGAN ZR, SKAAR EP. Nutrient zinc at the host-pathogen interface[J]. Trends in Biochemical Sciences, 2019, 44(12):1041-1056.
    [64] RAHMAN M, PATCHING SG, ISMAT F, HENDERSON PJF, HERBERT RB, BALDWIN SA, MCPHERSON MJ. Probing metal ion substrate-binding to the E. coli ZitB exporter in native membranes by solid state NMR[J]. Molecular Membrane Biology, 2008, 25(8):683-690.
    [65] DUCRET V, GONZALEZ MR, LEONI S, VALENTINI M, PERRON K. The CzcCBA efflux system requires the CadA P-type ATPase for timely expression upon zinc excess in Pseudomonas aeruginosa[J]. Frontiers in Microbiology, 2020, 11:911.
    [66] DUCRET V, ABDOU M, GONCALVES MILHO C, LEONI S, MARTIN——PELAUD O, SANDOZ A, SEGOVIA CAMPOS I, TERCIER-WAEBER ML, VALENTINI M, PERRON K. Global analysis of the zinc homeostasis network in Pseudomonas aeruginosa and its gene expression dynamics[J]. Frontiers in Microbiology, 2021, 12:739988.
    [67] CHOI SH, LEE KL, SHIN JH, CHO YB, CHA SS, ROE JH. Zinc-dependent regulation of zinc import and export genes by Zur[J]. Nature Communications, 2017, 8:15812.
    [68] KEHRES DG, MAGUIRE ME. Emerging themes in manganese transport, biochemistry and pathogenesis in bacteria[J]. FEMS Microbiology Reviews, 2003, 27(2/3):263-290.
    [69] PAPP-WALLACE KM, MAGUIRE ME. Manganese transport and the role of manganese in virulence[J]. Annual Review of Microbiology, 2006, 60:187-209.
    [70] IMLAY JA. The mismetallation of enzymes during oxidative stress[J]. Journal of Biological Chemistry, 2014, 289(41):28121-28128.
    [71] XU JL, ZHENG CK, CAO MM, ZENG T, ZHAO XG, SHI GL, CHEN HC, BEI WC. The manganese efflux system MntE contributes to the virulence of Streptococcus suis serotype 2[J]. Microbial Pathogenesis, 2017, 110:23-30.
    [72] SACHLA AJ, LUO YC, HELMANN JD. Manganese impairs the QoxABCD terminal oxidase leading to respiration-associated toxicity[J]. Molecular Microbiology, 2021, 116(3):729-742.
    [73] ROSCH JW, GAO GL, RIDOUT G, WANG YD, TUOMANEN EI. Role of the manganese efflux system mntE for signalling and pathogenesis in Streptococcus pneumoniae[J]. Molecular Microbiology, 2009, 72(1):12-25.
    [74] LIESER SA, DAVIS TC, HELMANN JD, COHEN SM. DNA-binding and oligomerization studies of the manganese(II) metalloregulatory protein MntR from Bacillus subtilis[J]. Biochemistry, 2003, 42(43):12634-12642.
    [75] OHBA H, SATOH K, YANAGISAWA T, NARUMI I. The radiation responsive promoter of the Deinococcus radiodurans pprA gene[J]. Gene, 2005, 363:133-141.
    [76] PITCHER RS, WILSON TE, DOHERTY AJ. New insights into NHEJ repair processes in prokaryotes[J]. Cell Cycle, 2005, 4(5):675-678.
    [77] MENNECIER S, COSTE G, SERVANT P, BAILONE A, SOMMER S. Mismatch repair ensures fidelity of replication and recombination in the radioresistant organism Deinococcus radiodurans[J]. Molecular Genetics and Genomics, 2004, 272(4):460-469.
    [78] NARUMI I, SATOH K, CUI SZ, FUNAYAMA T, KITAYAMA S, WATANABE H. PprA:a novel protein from Deinococcus radiodurans that stimulates DNA ligation[J]. Molecular Microbiology, 2004, 54(1):278-285.
    [79] MARTIN JE, LE MT, BHATTARAI N, CAPDEVILA DA, SHEN JC, WINKLER ME, GIEDROC DP. A Mn-sensing riboswitch activates expression of a Mn2+/Ca2+ ATPase transporter in Streptococcus[J]. Nucleic Acids Research, 2019, 47(13):6885-6899.
    [80] FISHER CR, WYCKOFF EE, PENG ED, PAYNE SM. Identification and characterization of a putative manganese export protein in Vibrio cholerae[J]. Journal of Bacteriology, 2016, 198(20):2810-2817.
    [81] WYMAN C, RISTIC D, KANAAR R. Homologous recombination-mediated double-strand break repair[J]. DNA Repair, 2004, 3(8/9):827-833.
    [82] MUHAMMAD S, NAILA A, SARAJ B, MUHAMMAD R, QIAN Y, CHANG X. Variation and succession of microbial communities under the conditions of persistent heavy metal and their survival mechanism[J]. Microbial Pathogenesis, 2021, 150:104713.
    [83] MONY C, VANDENKOORNHUYSE P, BOHANNAN BJM, PEAY K, LEIBOLD MA. A landscape of opportunities for microbial ecology research[J]. Frontiers in Microbiology, 2020, 11:561427.
    [84] ZHANEL GG, GOLDEN AR, ZELENITSKY S, WIEBE K, LAWRENCE CK, ADAM HJ, IDOWU T, DOMALAON R, SCHWEIZER F, ZHANEL MA, LAGACÉ-WIENS PRS, WALKTY AJ, NOREDDIN A, KARLOWSKY JA. Cefiderocol:a siderophore cephalosporin with activity against carbapenem- resistant and multidrug-resistant Gram-negative bacilli[J]. Drugs, 2019, 79(3):271-289.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

董欣楠,邓思敏,宋厚辉,徐加利,程昌勇. 细菌金属离子外排系统及金属稳态调控[J]. 微生物学报, 2024, 64(3): 672-686

复制
分享
文章指标
  • 点击次数:792
  • 下载次数: 1496
  • HTML阅读次数: 1000
  • 引用次数: 0
历史
  • 收稿日期:2023-08-17
  • 最后修改日期:2023-11-30
  • 在线发布日期: 2024-03-18
  • 出版日期: 2024-03-04
文章二维码