非洲猪瘟病毒D1133L蛋白增加宿主波形蛋白磷酸化而促进病毒在猪巨噬细胞中的复制
作者:
基金项目:

国家重点研发计划(2021YFD1801300);甘肃省科技重大专项计划(21ZD3NA001-5,20ZD7NA006);甘肃省科技计划(21JR7R024);动物用生物制品创制与应用(21ZD3NA001);国家生猪产业体系(CARS-35);国家生猪技术创新中心先导科技项目(NCTIP-XD/C03);“十四五”广东省农业科技创新十大主攻方向“揭榜挂帅”项目(2022SDZG02);中国农业科学院科技创新工程(CAAS-ASTIP-2022-LVRI)


D1133L protein of African swine fever virus promotes virus replication in pig macrophages by increasing vimentin phosphorylation in the host
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [7]
  • | | |
  • 文章评论
    摘要:

    非洲猪瘟(African swine fever, ASF)是由非洲猪瘟病毒(African swine fever virus, ASFV)感染引起家猪和野猪的一种高死亡率的传染性疾病。ASFV具有庞大的基因组,其中非结构蛋白pD1133L被预测为其编码的6个解旋酶之一。本实验室应用免疫沉淀-质谱联用(immunoprecipitation-mass spectrometry, IP-MASS)技术筛选与pD1133L互作的宿主细胞蛋白,发现细胞波形蛋白(vimentin, VIM)为pD1133L互作的宿主蛋白之一,但尚不清楚宿主蛋白VIM对ASFV复制的影响。【目的】探究ASFV与VIM的相互调控作用,揭示VIM促进ASFV复制的机制。【方法】通过免疫共沉淀(co-immunoprecipitation, Co-IP)试验验证pD1133L与VIM存在互作关系;外源过表达VIM蛋白以及设计并合成VIM的siRNA探究VIM对ASFV复制的影响;利用Western blotting以及荧光定量PCR (quantitative real-time PCR, qPCR)方法检测ASFV对VIM蛋白水平以及转录水平的影响;通过Western blotting、间接免疫荧光试验(immunofluorescence assay, IFA)探究巨噬细胞感染ASFV后VIM磷酸化水平变化以及亚细胞定位变化情况;CCK-8试剂盒检测VIM磷酸化抑制剂KN-93处理的最佳浓度,并利用Western blotting以及IFA检测KN-93对VIM磷酸化、亚细胞定位以及对ASFV复制影响。【结果】VIM过表达促进ASFV复制,敲低VIM的表达则抑制ASFV复制;ASFV感染抑制VIM蛋白水平以及转录水平表达,且呈时间依赖性;ASFV感染后VIM发生磷酸化修饰且发生亚细胞定位改变,从而促进ASFV复制。【结论】证实了ASFV与宿主蛋白VIM之间的相互调控作用;初步确定ASFV感染后VIM受到ASFV pD1133L调控,亚细胞定位发生重排向核周聚集从而促进ASFV复制的机制。

    Abstract:

    African swine fever (ASF) caused by African swine fever virus (ASFV) is a severe infectious disease affecting both domestic pigs and wild boar. ASFV has a large genome, and the non-structural protein pD1133L is predicted to be one of the six helicases the genome encodes. We used the IP-MASS technology to screen the host proteins interacting with pD1133L and found that vimentin (VIM) is one of the host proteins that interacted with pD1133L. However, it remains unclear how the VIM affects ASFV replication. 【Objective】 To investigate the mutual regulation between ASFV and VIM and disclose the mechanism by which VIM enhances ASFV replication. 【Methods】 We employed the Co-IP assay to examine the interaction between pD1133L and VIM. Furthermore, we examined the effects of VIM on ASFV replication by designing and synthetizing VIM siRNAs and overexpressing VIM. Western blotting and quantitative real-time PCR (qPCR) were employed to determine the impact of ASFV on the protein and mRNA levels of VIM. Western blotting and indirect immunofluorescence assay (IFA) were used to explore the changes in the phosphorylation level and subcellular localization of VIM in macrophages infected with ASFV. The CCK-8 kit was used to determine the optimal concentration of KN-93, a VIM phosphorylation inhibitor, for treatment. The effects of KN-93 on the phosphorylation and subcellular localization of VIM and the replication of ASFV were examined by Western blotting and IFA. 【Results】 The overexpression of VIM promoted the replication of ASFV, while the knockdown of VIM inhibited ASFV replication. In addition, ASFV infection down-regulated both the protein and mRNA levels of VIM in a time-dependent manner. After ASFV infection, VIM was modified by phosphorylation and changed in subcellular localization, thereby promoting ASFV replication. 【Conclusion】 This study confirms the interaction between ASFV and the host protein VIM. After ASFV infection, pD1133L leads to the rearrangement of the subcellular localization of VIM towards paranuclear aggregation, which promotes ASFV replication.

    参考文献
    [1] GAUDREAULT NN, MADDEN DW, WILSON WC, TRUJILLO JD, RICHT JA. African swine fever virus:an emerging DNA arbovirus[J]. Frontiers in Veterinary Science, 2020, 7:215.
    [2] BORCA MV, RAMIREZ-MEDINA E, SILVA E, VUONO E, RAI A, PRUITT S, HOLINKA LG, VELAZQUEZ-SALINAS L, ZHU J, GLADUE DP. Development of a highly effective African swine fever virus vaccine by deletion of the I177L gene results in sterile immunity against the current epidemic Eurasia strain[J]. Journal of Virology, 2020, 94(7):e02017-e02019.
    [3] LI ZY, CHEN WX, QIU ZL, LI YW, FAN JD, WU KK, LI XW, ZHAO MQ, DING HX, FAN SQ, CHEN JD. African swine fever virus:a review[J]. Life (Basel, Switzerland), 2022, 12(8):1255.
    [4] YANG SC, MIAO C, LIU W, ZHANG GL, SHAO JJ, CHANG HY. Structure and function of African swine fever virus proteins:current understanding[J]. Frontiers in Microbiology, 2023, 14:1043129.
    [5] WANG GG, XIE MJ, WU W, CHEN ZZ. Structures and functional diversities of ASFV proteins[J]. Viruses, 2021, 13(11):2124.
    [6] YÁÑEZ RJ, RODRÍGUEZ JM, BOURSNELL M, RODRIGUEZ J, VIÑUELA E. Two putative African swine fever virus helicases similar to yeast 'DEAH' pre-mRNA processing proteins and vaccinia virus ATPases D11L and D6R[J]. Gene, 1993, 134(2):161-174.
    [7] SHAO ZW, SU SC, YANG J, ZHANG WZ, GAO YQ, ZHAO X, ZHANG YX, SHAO QY, CAO CL, LI HL, LIU HH, ZHANG JR, LIN JZ, MA JB, GAN JH. Structures and implications of the C962R protein of African swine fever virus[J]. Nucleic Acids Research, 2023, 51(17):9475-9490.
    [8] 侯景, 申超超, 张大俊, 杨博, 史喜绢, 张婷, 崔卉梅, 袁兴国, 赵登率, 陈学辉, 张克山, 郑海学, 刘湘涛. 非洲猪瘟病毒解旋酶D1133L基因序列分析、蛋白结构预测及亚细胞定位[J]. 畜牧兽医学报, 2021, 52(7):1953-1962. HOU J, SHEN CC, ZHANG DJ, YANG B, SHI XJ, ZHANG T, CUI HM, YUAN XG, ZHAO DS, CHEN XH, ZHANG KS, ZHENG HX, LIU XT. Gene sequence analysis, protein structure prediction and subcellular localization of African swine fever virus helicase D1133L[J]. Chinese Journal of Animal and Veterinary Sciences, 2021, 52(7):1953-1962(in Chinese).
    [9] 张婷, 冯涛, 杨金柯, 郝雨, 杨行, 张大俊, 史喜绢, 闫文倩, 陈玲玲, 刘湘涛, 郑海学, 张克山. 条件性敲除D1133L基因的重组非洲猪瘟病毒的构建及增殖特性[J]. 畜牧兽医学报, 2023, 54(2):706-714. ZHANG T, FENG T, YANG JK, HAO Y, YANG X, ZHANG DJ, SHI XJ, YAN WQ, CHEN LL, LIU XT, ZHENG HX, ZHANG KS. Construction and growth characteristics of recombinant African swine fever virus with conditional deletion of D1133L gene[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2):706-714(in Chinese).
    [10] HAO Y, YANG JK, YANG B, ZHANG T, SHI XJ, YANG X, ZHANG DJ, ZHAO DS, YAN WQ, CHEN LL, LIU XT, ZHENG HX, ZHANG KS. Identification and analysis of the interaction network of African swine fever virus D1133L with host proteins[J]. Frontiers in Microbiology, 2022, 13:1037346.
    [11] ZHANG Y, WEN ZY, SHI XM, LIU YJ, ERIKSSON JE, JIU YM. The diverse roles and dynamic rearrangement of vimentin during viral infection[J]. Journal of Cell Science, 2020, 134(5):jcs250597.
    [12] MIAO CL, ZHAO SS, ETIENNE-MANNEVILLE S, JIU YM. The diverse actions of cytoskeletal vimentin in bacterial infection and host defense[J]. Journal of Cell Science, 2023, 136(1):jcs260509.
    [13] ARRINDELL J, ABOU ATMEH P, JAYET L, SEREME Y, MEGE JL, DESNUES B. Vimentin is an important ACE2 co-receptor for SARS-CoV-2 in epithelial cells[J]. iScience, 2022, 25(11):105463.
    [14] SUPREWICZ Ł, SWOGER M, GUPTA S, PIKTEL E, BYFIELD FJ, IWAMOTO DV, GERMANN D, RESZEĆ J, MARCIŃCZYK N, CARROLL RJ, JANMEY PA, SCHWARZ JM, BUCKI R, PATTESON AE. Extracellular vimentin as a target against SARS-CoV-2 host cell invasion[J]. Small, 2022, 18(6):e2105640.
    [15] HELENIUS A. Virus entry:looking back and moving forward[J]. Journal of Molecular Biology, 2018, 430(13):1853-1862.
    [16] CHENG Y, LOU JX, LIU YY, LIU CC, CHEN J, YANG MC, YE YB, GO YY, ZHOU B. Intracellular vimentin regulates the formation of classical swine fever virus replication complex through interaction with NS5A protein[J]. Journal of Virology, 2023, 97(5):e0177022.
    [17] GAO YN, LI JS, WANG ZJ, JIANG P, BAI J, LI YF, WANG XW. Vimentin pro癭楯浴敥湳琠楰湯?牣敩杮略氠慣瑩敲獣?捶潩湲獵瑳爠畴捹瑰楥漠渲?潐晃?搼敳湵杢甾攲?瘯楳牵畢猾?爠敲灥汰楬捩慣瑡楴潩湯?挠潩浮瀠汰敩硧攠獡?瑶桥牯潬畡杲栠?楡湣瑲敯牰慨捡瑧楥潛湊?眮椠瑖桩?乵即???灳牥潡瑲散楨測嬠?崰?′?漠申爱游愺氱?漸昸?嘲椮爼潢汲漾杛礱??㈠ず?????????????????????A, FENG FP, LI M, XUE YH, CUI J, XU T, JIN X, JIU YM. Host cytoskeletal vimentin serves as a structural organizer and an RNA-binding protein regulator to facilitate zika viral replication[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(8):e2113909119.
    [19] WONG MH, SAMAL AB, LEE MK, VLACH J, NOVIKOV N, NIEDZIELA-MAJKA A, FENG JY, KOLTUN DO, BRENDZA KM, KWON HJ, SCHULTZ BE, SAKOWICZ R, SAAD JS, PAPALIA GA. The KN-93 molecule inhibits calcium/calmodulin- dependent protein kinase II (CaMKII) activity by binding to Ca2+/CaM[J]. Journal of Molecular Biology, 2019, 431(7):1440-1459.
    [20] RAMOS I, STAMATAKIS K, OESTE CL, PÉREZ- SALA D. Vimentin as a multifaceted player and potential therapeutic target in viral infections[J]. International Journal of Molecular Sciences, 2020, 21(13):4675.
    [21] YU JH, LI XJ, ZHOU DR, LIU XL, HE XE, HUANG SH, WU QH, ZHU L, YU LZ, YAO JX, ZHANG B, ZHAO W. Vimentin inhibits dengue virus type 2 invasion of the blood-brain barrier[J]. Frontiers in Cellular and Infection Microbiology, 2022, 12:868407.
    [22] HAKIM F, KAZEMIRAAD C, AKBARI-BIRGANI S, ABDOLLAHPOUR D, MOHAMMADI S. Caspase-9- mediated cleavage of vimentin attenuates the aggressiveness of leukemic NB4 cells[J]. Molecular and Cellular Biochemistry, 2023, 478(11):2435-2444.
    [23] LIU SH, SU YZ, LU ZZ, ZOU XH, XU LL, TENG Y, WANG ZY, WANG T. The SFTSV nonstructural proteins induce autophagy to promote viral replication via interaction with vimentin[J]. Journal of Virology, 2023, 97(4):e0030223.
    [24] ZHAO SS, XU QP, CUI YQ, YAO S, JIN SH, ZHANG Q, WEN ZY, RUAN HH, LIANG X, CHAO YJ, GONG ST, SANSONETTI P, WEI K, TANG H, JIU YM. Salmonella effector SopB reorganizes cytoskeletal vimentin to maintain replication vacuoles for efficient infection[J]. Nature Communications, 2023, 14:478.
    [25] TEO CSH, CHU JJH. Cellular
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈玲玲,张婷,郝雨,杨金柯,史喜绢,张大俊,杨行,赵登率,闫文倩,别鑫恬,陈国辉,郑海学,乐涛,张克山. 非洲猪瘟病毒D1133L蛋白增加宿主波形蛋白磷酸化而促进病毒在猪巨噬细胞中的复制[J]. 微生物学报, 2024, 64(3): 720-732

复制
分享
文章指标
  • 点击次数:272
  • 下载次数: 746
  • HTML阅读次数: 353
  • 引用次数: 0
历史
  • 收稿日期:2023-07-20
  • 最后修改日期:2023-12-06
  • 在线发布日期: 2024-03-18
  • 出版日期: 2024-03-04
文章二维码