湖羊瘤胃微生物GH9家族葡聚糖酶基因IDSGLUC9-25的表达与功能表征
作者:
基金项目:

浙江省研发攻关计划(2022C02043);浙江省“生物工程”一流学科自设课题(ZS2023008)


Heterologous expression and characterization of a GH9 glucanase gene IDSGLUC9-25 from rumen microbiota in Hu sheep
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [34]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】葡聚糖酶是饲用添加剂的重要成分,本研究旨在从湖羊消化道微生物中挖掘性质优良的GH9家族葡聚糖酶基因,用于研发新型饲用酶制剂。【方法】从湖羊瘤胃微生物cDNA中扩增IDSGLUC9-25基因,在大肠杆菌中进行异源表达,对重组蛋白进行诱导表达和纯化,研究重组蛋白的酶学性质和底物水解模式。【结果】IDSGLUC9-25基因编码527个氨基酸,包含一个CelD_N结构和一个GH9家族催化结构域;重组蛋白rIDSGLUC9-25分子量约为62.7 kDa,最适反应温度和pH分别为40℃和6.0,在30-50℃下活性较高,在pH 4.0-8.0范围内能够保持较高的稳定性,经pH 4.0-8.0缓冲液处理1 h后残余活性均大于90%;底物谱分析表明,rIDSGLUC9-25能催化大麦β-葡聚糖、苔藓地衣多糖、魔芋胶和木葡聚糖,比活性分别为(443.55±24.48)、(65.56±5.98)、(122.37±2.85)和(159.16±7.73) U/mg;利用薄层色谱法(thin layer chromatography, TLC)和高效液相色谱法(high performance liquid chromatography, HPLC)分析水解产物发现,rIDSGLUC9-25降解大麦葡聚糖主要生成纤维三糖(占总还原糖64.19%±1.19%)和纤维四糖(占总还原糖26.24%±0.12%),催化地衣多糖主要生成纤维三糖(占总还原糖78.46%±0.89%)。【结论】本研究报道了一种来自密螺旋体属细菌的内切β-1,4-葡聚糖酶IDSGLUC9-25 (EC 3.2.1.4),能高效催化多糖底物生成纤维三糖和纤维四糖,为研发饲用酶制剂和制备低聚寡糖建立基础。

    Abstract:

    【Objective】 Glucanases serve as one of the main components in feed additives. This study identified and characterized a novel GH9 glucanase gene derived from rumen microbiota in herbivores, aiming to provide a reference for the research and development of feed enzymes. 【Methods】 We obtained the IDSGLUC9-25 gene from the rumen fluid cDNA of Hu sheep and heterologously expressed it in Escherichia coli. The recombinant protein was induced for expression by isopropyl β-D-thiogalactopyranoside, purified, and then subjected to functional characterization. 【Results】 IDSGLUC9-25 encoded a protein consisting of 527 amino acid residues, which included a CelD_N domain and a GH9 family catalytic domain. The recombinant rIDSGLUC9-25 protein exhibited a molecular weight of approximately 62.7 kDa and the highest enzymatic activity at 40 °C and pH 6.0. The enzyme displayed robust catalytic activity within the temperature range of 30–50 °C. After preincubation at pH 4.0–8.0 for 1 h, rIDSGLUC9-25 retained the relative activity over 90%. The substrate spectrum analysis revealed that rIDSGLUC9-25 exhibited specific activities against barley β-glucan, moss lichenan, konjac gum, and xyloglucan, with the activities of (443.55±24.48), (65.56±5.98), (122.37±2.85), and (159.16±7.73) U/mg, respectively. The hydrolysis assay showed that rIDSGLUC9-25 primarily catalyzed the hydrolysis of β-glucan into cellotriose (representing 64.19%±1.19% of total reducing sugars) and cellotetraose (representing 26.24%±0.12% of total reducing sugars). Additionally, the enzyme predominantly generated cellotriose from the hydrolysis of lichenan (representing 78.46%±0.89% of total reducing sugars). 【Conclusion】 This study characterizes IDSGLUC9-25, an endo-β-1,4-glucanase (EC 3.2.1.4) derived from Treponema sp. The enzyme exhibited robust activity in the conversion of polysaccharides into cellotriose and cellotetraose, establishing a foundation for the development of feed enzymes and functional oligosaccharides preparation.

    参考文献
    [1] BECKMANN L, SIMON O, VAHJEN W. Isolation and identification of mixed linked β-glucan degrading bacteria in the intestine of broiler chickens and partial characterization of respective 1,3-1,4-β-glucanase activities[J]. Journal of Basic Microbiology, 2006, 46(3):175-185.
    [2] LeBLANC JG, CHAIN F, MARTÍN R, BERMÚDEZ-HUMARÁN LG, COURAU S, LANGELLA P. Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria[J]. Microbial Cell Factories, 2017, 16(1):1-10.
    [3] LI Z, DONG Y, XIAO X, ZHOU XH. Mechanism by which β-glucanase improves the quality of fermented barley flour-based food products[J]. Food Chemistry, 2020, 311:126026.
    [4] BERNARD H, GIDEON D. Structural and sequence-based classification of glycoside hydrolases[J]. Current Opinion in Structural Biology, 1997, 7(5):637-644.
    [5] GOLDENKOVA-PAVLOVA IV, TYURIN AА, MUSTAFAEV ON. The features that distinguish lichenases from other polysaccharide-hydrolyzing enzymes and the relevance of lichenases for biotechnological applications[J]. Applied Microbiology and Biotechnology, 2018, 102(9):3951-3965.
    [6] SU MC, HAO ZY, SHI HB, LI TT, WANG HH, LI Q, ZHANG Y, MA YJ. Metagenomic analysis revealed differences in composition and function between liquid-associated and solid-associated microorganisms of sheep rumen[J]. Frontiers in Microbiology, 2022, 13:851567.
    [7] XUE MY, WU JJ, XIE YY, ZHU SL, ZHONG YF, LIU JX, SUN HZ. Investigation of fiber utilization in the rumen of dairy cows based on metagenome-assembled genomes and single-cell RNA sequencing[J]. Microbiome, 2022, 10(1):11.
    [8] TROCHINE A, BELLORA N, NIZOVOY P, DURAN R, GREIF G, de GARCÍA V, BATTHYANY C, ROBELLO C, LIBKIND D. Genomic and proteomic analysis of Tausonia pullulans reveals a key role for a GH15 glucoamylase in starch hydrolysis[J]. Applied Microbiology and Biotechnology, 2022, 106(12):4655-4667.
    [9] HUANG HQ, ZHENG ZG, ZOU XX, WANG ZX, GAO R, ZHU J, HU YH, BAO SX. Genome analysis of a novel polysaccharide-degrading bacterium Paenibacillus algicola and determination of alginate lyases[J]. Marine Drugs, 2022, 20(6):388.
    [10] ARIAEENEJAD S, MALEKI M, HOSSEINI E, KAVOUSI K, MOOSAVI-MOVAHEDI AA, SALEKDEH GH. Mining of camel rumen metagenome to identify novel alkali-thermostable xylanase capable of enhancing the recalcitrant lignocellulosic biomass conversion[J]. Bioresource Technology, 2019, 281:343-350.
    [11] HE B, JIN SW, CAO JW, MI L, WANG JK. Metatranscriptomics of the Hu sheep rumen microbiome reveals novel cellulases[J]. Biotechnology for Biofuels, 2019, 12(1):1-15.
    [12] CAO JW, DEN Q, GAO DY, HE B, YIN SJ, QIAN LC, WANG JK, WANG Q. A novel bifunctional glucanase exhibiting high production of glucose and cellobiose from rumen bacterium[J]. International Journal of Biological Macromolecules, 2021, 173:136-145.
    [13] GAO DY, SUN XB, FANG Y, HE B, WANG JH, LIU JX, WANG JK, WANG Q. Heterologous expression and characterization of two novel glucanases derived from sheep rumen microbiota[J]. World Journal of Microbiology and Biotechnology, 2022, 38(5):1-14.
    [14] GIDEON D, BERNARD H. Structures and mechanisms of glycosyl hydrolases[J]. Structure, 1995, 3(9):853-859.
    [15] MICHAEL JB, PETER B, KAISA P. Interlaboratory testing of methods for assay of xylanase activity[J]. Journal of Biotechnology, 1992, 23(3):257-270.
    [16] MARION MB. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1/2):248-254.
    [17] KHADEMI S, GUARINO LA, WATANABE H, TOKUDA G, MEYER EF. Structure of an endoglucanase from termite, Nasutitermes takasagoensis[J]. Acta Crystallographica Section D Biological Crystallography, 2002, 58(4):653-659.
    [18] PANG H, ZHANG P, DUAN CJ, MO XC, TANG JL, FENG JX. Identification of cellulase genes from the metagenomes of compost soils and functional characterization of one novel endoglucanase[J]. Current Microbiology, 2009, 58(4):404-408.
    [19] BELOQUI A, NECHITAYLO TY, LÓPEZ-CORTÉS N, GHAZI A, GUAZZARONI ME, POLAINA J, STRITTMATTER AW, REVA O, WALICZEK A, YAKIMOV MMniae PAMC 26568[J]. Frontiers in Microbiology, 2022, 13:935497.
    [35] KALIDAS NR, SAMINATHAN M, ISMAIL IS, ABAS F, MAITY P, ISLAM SS, MANSHOOR N, SHAARI K. Structural characterization and evaluation of prebiotic activity of oil palm kernel cake mannanoligosaccharides[J]. Food Chemistry, 2017, 234:348-355.
    [36] PHiROM-ON K, APIRAKSAKORN J. Development of cellulose-ba?ed prebiotic fiber from banana peel by enzymatic hydrolysis[J]. Food Bioscience, 2021, 41:101083. [21] MASILAMANI R, SHARMA OP, MUTHUVEL SK, NATARAJAN S. Cloning, expression of β-1,3-1,4 glucanase from Bacillus subtilis SU40 and the effect of calcium ion on the stability of recombinant enzyme:in vitro and in silico analysis[J]. Bioinformation, 2013, 9(19):958-962.
    [22] TENG D, WANG JH, FAN Y, YANG YL, TIAN ZG, LUO J, YANG GP, ZHANG F. Cloning of β-1,3-1,4-glucanase gene from Bacillus licheniformis EGW039(CGMCC 0635) and its expression in Escherichia coli BL21(DE3)[J]. Applied Microbiology and Biotechnology, 2006, 72(4):705-712.
    [23] MAO SR, LU ZX, ZHANG C, LU FX, BIE XM. Purification, characterization, and heterologous expression of a thermostable β-1,3-1,4-glucanase from Bacillus altitudinis YC-9[J]. Applied Biochemistry and Biotechnology, 2013, 169(3):960-975.
    [24] NIU QH, ZHANG G, ZHANG L, MA YL, SHI Q, FU WW. Purification and characterization of a thermophilic 1,3-1,4-β-glucanase from Bacillus methylotrophicus S2 isolated from booklice[J]. Journal of Bioscience and Bioengineering, 2016, 121(5):503-508.
    [25] DADHEECH T, SHAH R, PANDIT R, HINSU A, CHAUHAN PS, JAKHESARA S, KUNJADIYA A, RANK D, JOSHI C. Cloning, molecular modeling and characterization of acidic cellulase from buffalo rumen and its applicability in saccharification of lignocellulosic biomass[J]. International Journal of Biological Macromolecules, 2018, 113:73-81.
    [26] WU DW, WANG SM, VINITCHAIKUL P, ZHU YX, ZHOU XY, GU ZB, LENG J, GOU X, DENG MY, SUN LY, MAO HM, YANG SL. Directed modification of a ruminal cellulase gene (CMC-1) from a metagenomic library isolated from Yunnan gayal (Bos frontalis)[J]. Archives of Microbiology, 2020, 202(5):1117-1126.
    [27] BANIEL A, AMATO KR, BEEHNER JC, BERGMAN TJ, MERCER A, PERLMAN RF, PETRULLO L, REITSEMA L, SAMS S, LU A, SNYDER-MACKLER N. Seasonal shifts in the gut microbiome indicate plastic responses to diet in wild geladas[J]. Microbiome, 2021, 9(1):1-20.
    [28] WANG JK, SUN ZY, ZHOU Y, WANG Q, YE JA, CHEN ZM, LIU JX. Screening of a xylanase clone from a fosmid library of rumen microbiota in Hu sheep[J]. Animal Biotechnology, 2012, 23(3):156-173.
    [29] WANG Q, LUO Y, HE B, JIANG LS, LIU JX, WANG JK. Characterization of a novel xylanase gene from rumen content of Hu sheep[J]. Applied Biochemistry and Biotechnology, 2015, 177(7):1424-1436.
    [30] HAN C, LIU YF, LIU MY, WANG SQ, WANG QQ. Improving the thermostability of a thermostable endoglucanase from Chaetomium thermophilum by engineering the conserved noncatalytic residue and N-glycosylation site[J]. International Journal of Biological Macromolecules, 2020, 164:3361-3368.
    [31] NAKATANI K, KATANO Y, KOJIMA K, TAKITA T, YATSUNAMI R, NAKAMURA S, YASUKAWA K. Increase in the thermostability of Bacillus sp. strain TAR-1 xylanase using a site saturation mutagenesis library[J]. Bioscience, Biotechnology, and Biochemistry, 2018, 82(10):1715-1723.
    [32] SUN XB, CAO JW, WANG JK, LIN HZ, GAO DY, QIAN GY, PARK YD, CHEN ZF, WANG Q. SpyTag/SpyCatcher molecular cyclization confers protein stability and resilience to aggregation[J]. New Biotechnology, 2019, 49:28-36.
    [33] RYKOV SV, KORNBERGER P, HERLET J, TSURIN NV, ZOROV IN, ZVERLOV VV, LIEBL W, SCHWARZ WH, YAROTSKY SV, BEREZINA OV. Novel endo-(1,4)-β-glucanase Bgh12A and xyloglucanase Xgh12B from Aspergillus cervinus belong to GH12 subgroup I and II, respectively[J]. Applied Microbiology and Biotechnology, 2019, 103(18):7553-7566.
    [34] KIM DY, KIM J, LEE YM, BYEON SM, GWAK JH, LEE JS, SHIN DH, PARK HY. Novel, acidic, and cold-adapted glycoside hydrolase family 8 endo-β-1,4-glucanase from an Antarctic lichen-associated bacterium, Lichenicola clado
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

徐晓锋,韩俊彦,丁钰杰,廖静,高德英,张骥,王佳堃,尹尚军,王谦,徐洁皓. 湖羊瘤胃微生物GH9家族葡聚糖酶基因IDSGLUC9-25的表达与功能表征[J]. 微生物学报, 2024, 64(3): 755-766

复制
分享
文章指标
  • 点击次数:226
  • 下载次数: 884
  • HTML阅读次数: 427
  • 引用次数: 0
历史
  • 收稿日期:2023-07-31
  • 最后修改日期:2023-10-13
  • 在线发布日期: 2024-03-18
  • 出版日期: 2024-03-04
文章二维码